Advertisements
Advertisements
प्रश्न
Evaluate the following limit :
`lim_(x -> 0) [(3^x + 3^-x - 2)/(x*tanx)]`
उत्तर
`lim_(x -> 0) [(3^x + 3^-x - 2)/(xtanx)]`
= `lim_(x -> 0) (3^x[3^x + 3^-x - 2])/(3^x*xtanx)`
= `lim_(x -> 0) ((3^x)^2 + 1 - 2(3^x))/(3^x*xtanx)`
= `lim_(x -> 0) (3^x - 1)^2/(3^x *xtanx)`
= `lim_(x -> 0) ((3^x - 1)/x)^2/(3^x * (tanx/x))` ...[∵ x → 0, x ≠ 0 ∴ x2 ≠ 0]
= `(lim_(x -> 0) (3^x - 1)/x)^2/((lim_(x -> 0) 3^x) xx (lim_(x -> 0) tanx/x)`
= `(log3)^2/(3^0*1) ...[because lim_(x -> 0) ("a"^x - 1)/x = log"a"]`
= (log 3)2
APPEARS IN
संबंधित प्रश्न
Evaluate the following: `lim_(x -> 0)[(9^x - 5^x)/(4^x - 1)]`
Evaluate the following: `lim_(x -> 0)[(log(2 + x) - log( 2 - x))/x]`
Evaluate the following: `lim_(x -> 0) [(3^x + 3^-x - 2)/x^2]`
Evaluate the following: `lim_(x -> 0) [("a"^(3x) - "b"^(2x))/(log 1 + 4x)]`
Evaluate the following: `lim_(x -> 0)[(15^x - 5^x - 3^x +1)/x^2]`
Evaluate the following: `lim_(x -> 0)[((49)^x- 2(35)^x + (25)^x)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)[(log(1 + 9x))/x]`
Evaluate the following Limits: `lim_(x -> 0)[(log 100 + log (0.01 + x))/x]`
Evaluate the following Limits: `lim_(x -> 0)[(log(4 - x) - log(4 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`
Evaluate the following limit :
`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`
Evaluate the following limit :
`lim_(x -> 0) [(log(3 - x) - log(3 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`
Evaluate the following limit :
`lim_(x -> 0)[(15^x - 5^x - 3^x + 1)/(x*sinx)]`
Evaluate the following limit :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((3 + 5x)/(3 - 4x))^(1/x)` =
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =
Evaluate the following :
`lim_(x -> 0)[("e"^x + "e"^-x - 2)/(x*tanx)]`
Evaluate the following :
`lim_(x -> 2) [(logx - log2)/(x - 2)]`
Evaluate the following :
`lim_(x -> 0) [((5^x - 1)^2)/((2^x - 1)log(1 + x))]`
`lim_(x -> 0) (log(1 + (5x)/2))/x` is equal to ______.
The value of `lim_{x→0} (1 + sinx - cosx + log_e(1 - x))/x^3` is ______
The value of `lim_{x→2} (e^{3x - 6} - 1)/(sin(2 - x))` is ______
`lim_(x -> 0) (15^x - 3^x - 5^x + 1)/(xtanx)` is equal to ______.
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x+1)/x^2]`
Evaluate the following `lim_(x->0)[((25)^x - 2(5)^x+1) /(x^2)]`
Evaluate the following :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following limit :
`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following :
`lim_(x->0)[((25)^x -2 (5)^x +1)/(x^2)]`
Evaluate the following:
`lim_(x->0) [((25)^x - 2(5)^x + 1)/x^2]`