मराठी

Evaluate the following: limx→0a3x-b2xlog1+4x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following: `lim_(x -> 0) [("a"^(3x) - "b"^(2x))/(log 1 + 4x)]`

बेरीज

उत्तर

`lim_(x -> 0) [("a"^(3x) - "b"^(2x))/(log 1 + 4x)]`

= `lim_(x -> 0)  ("a"^(3x) - 1 - "b"^(2x) - 1)/(log 1 + 4x)`

= `lim_(x -> 0) [("a"^(3x) - 1 - "b"^(2x) - 1)/x)/((log 1 + 4x)/x)`

= `(lim_(x -> 0) [("a"^(3x) - 1)/x - ("b"^(2x) - 1)/x])/(lim_(x -> 0) (log 1 + 4x)/(x)`

= `(lim_(x -> 0)[("a"^(3x) - 1)/(3x)] xx 3  - lim_(x -> 0)[("b"^(2x) - 1)/(2x)] xx 2)/(lim_(x -> 0) (log 1 + 4x)/(4x) xx 4)`

= `(3log "a" - 2 log"b")/(1 xx 4)    ...[(because x -> 0","  2x -> 0"," 3x -> 0),(4x -> 0 and lim_(x -> 0) ("a"^x - 1)/x = log "a"),(and lim_(x -> 0) (log (1 + x))/x = 1)]`

= `1/4(log"a"^3 - log"b"^2)`

= `1/4 log("a"^3/"b"^2)`

shaalaa.com
Limits of Exponential and Logarithmic Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - EXERCISE 7.4 [पृष्ठ १०५]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×