मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Evaluate the following : limx→0[a3x-a2x-ax+1x⋅tanx] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following :

`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`

बेरीज

उत्तर

`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`

= `lim_(x -> 0) ("a"^(2x) * "a"^x - "a"^(2x) - "a"^x + 1)/(xtanx)`

= `lim_(x -> 0) ("a"^(2x)("a"^x - 1) - ("a"^x - 1))/(xtanx)`

= `lim_(x -> 0) (("a"^x - 1)("a"^(2x) - 1))/(xtanx)`

= `lim_(x -> 0)((("a"^x - 1)/x)(("a"^(2x) - 1)/x))/((tanx/x)`  ...[∵ x → 0, ∴ x ≠ 0]

= `((lim_(x -> 0) ("a"^x - 1)/x) xx (lim_(x -> 0) (("a"^2)^x - 1)/x))/((lim_(x -> 0) tanx/x))`

= `((log "a")(log "a"^2))/1   ...[because lim_(x -> 0) ("a"^x - 1)/x = log "a"]`

= (log a)(2 log a)

= 2(log a)2

shaalaa.com
Limits of Exponential and Logarithmic Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - Miscellaneous Exercise 7.2 [पृष्ठ १५९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 7 Limits
Miscellaneous Exercise 7.2 | Q II. (10) | पृष्ठ १५९

संबंधित प्रश्‍न

Evaluate the following: `lim_(x -> 0)[(5^x + 3^x - 2^x - 1)/x]`


Evaluate the following: `lim_(x -> 0) [(3^x + 3^-x - 2)/x^2]`


Evaluate the following: `lim_(x -> 0) [("a"^(3x) - "b"^(2x))/(log 1 + 4x)]`


Evaluate the following: `lim_(x -> 0)[(15^x - 5^x - 3^x +1)/x^2]`


Evaluate the following: `lim_(x -> 2) [(3^(x/2) - 3)/(3^x - 9)]`


Evaluate the following Limits: `lim_(x -> 0)[(5^x - 1)/x]`


Evaluate the following Limits: `lim_(x -> 0)(1 + x/5)^(1/x)`


Evaluate the following Limits: `lim_(x -> 0)[(log(1 + 9x))/x]`


Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x  + 1)/x^2]`


Evaluate the following Limits: `lim_(x -> 0) [("a"^(4x) - 1)/("b"^(2x) - 1)]`


Evaluate the following limit : 

`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`


Evaluate the following limit : 

`lim_(x -> 0) [(log(3 - x) - log(3 + x))/x]`


Evaluate the following limit : 

`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`


Evaluate the following limit : 

`lim_(x -> 0)[(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))]`


Evaluate the following limit :

`lim_(x -> 0) [((49)^x - 2(35)^x + (25)^x)/(sinx* log(1 + 2x))]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((3 + 5x)/(3 - 4x))^(1/x)` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) [(x*log(1 + 3x))/("e"^(3x) - 1)^2]` =


Select the correct answer from the given alternatives.

`lim_(x→0)[(3^(sinx) - 1)^3/((3^x - 1).tan x.log(1 + x))]` =


Evaluate the following :

`lim_(x -> 0)[("e"^x + "e"^-x - 2)/(x*tanx)]`


Evaluate the following : 

`lim_(x -> 0) [((5^x - 1)^2)/((2^x - 1)log(1 + x))]`


If the function

f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`

= 16 , x = 0

is continuous at x = 0, then k = ?


`lim_{x→∞} ((3x + 3)^40(9x - 3)^5)/(3x + 1)^45` = ______ 


The value of `lim_{x→-∞} (sqrt(5x^2 + 4x + 7))/(5x + 4)` is ______ 


`lim_(x -> 0) (log(1 + (5x)/2))/x` is equal to ______.


The value of `lim_{x→2} (e^{3x - 6} - 1)/(sin(2 - x))` is ______ 


`lim_(x -> 0) (15^x - 3^x - 5^x + 1)/(xtanx)` is equal to ______.


Evaluate the following  `lim_(x->0)[((25)^x - 2(5)^x+1) /(x^2)]`


Evaluate the following :

`lim_(x->0)[((25)^x -2 (5)^x +1)/(x^2)]`


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x-2(5)^x+1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`


Evaluate the following:

`lim_(x->0) [((25)^x - 2(5)^x + 1)/x^2]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×