Advertisements
Advertisements
प्रश्न
Evaluate the following :
`lim_(x -> 1) [("ab"^x - "a"^x"b")/(x^2 - 1)]`
उत्तर
`lim_(x -> 1) ("ab"^x - "a"^x"b")/(x^2 - 1)`
= `lim_(x -> 1) ("ab"("b"^(x - 1) - "a"^(x - 1)))/(x^2 - 1^2)`
= `lim_(x -> 1) ("ab"("b"^(x - 1) - "a"^(x - 1)))/((x - 1)(x + 1))`
Put x = 1 + h, ∴ x – 1 = h
As x → 1, h → 0
∴ `lim_(x -> 1) ("ab"^x - "a"^x"b")/(x^2 - 1)`
= `lim_("h" -> 0) ("ab"("b"^"h" - "a"^"h"))/("h"(1 + "h" + 1))`
= `"ab" lim_("h" -> 0) ("b"^"h" - 1 + 1 - "a"^"h")/("h"(2 + "h"))`
= `"ab" lim_("h" -> 0) (("b"^"h" - 1) - ("a"^"h" - 1))/("h"(2 + "h"))`
= `"ab" lim_("h" -> 0) 1/(2 + "h") (("b"^"h" - 1)/"h" - ("a"^"h" - 1)/"h")`
= `"ab"* 1/(lim_("h" -> 0)(2 + "h")) (lim_("h" -> 0) ("b"^"h" - 1)/"h" - lim_("h" -> 0) ("a"^"h" - 1)/"h")`
= `"ab"* 1/(2 + 0) * (log"b" - log"a") ...[because lim_(x -> 0) ("a"^x - 1)/x = log"a"]`
= `"ab"/2 log ("b"/"a")`
APPEARS IN
संबंधित प्रश्न
Evaluate the following: `lim_(x -> 0)[(9^x - 5^x)/(4^x - 1)]`
Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`
Evaluate the following: `lim_(x -> 0) [("a"^(3x) - "b"^(2x))/(log 1 + 4x)]`
Evaluate the following: `lim_(x -> 0)[((49)^x- 2(35)^x + (25)^x)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)[(5^x - 1)/x]`
Evaluate the following Limits: `lim_(x -> 0)(1 + x/5)^(1/x)`
Evaluate the following Limits: `lim_(x -> 0) ("e"^x + e^(-x) - 2)/x^2`
Evaluate the following Limits: `lim_(x -> 0)[(x(6^x - 3^x))/((2^x - 1)*log(1 + x))]`
Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x + 1)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)[(log(4 - x) - log(4 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`
Evaluate the following limit :
`lim_(x -> 0) [(5^x + 3^x - 2^x - 1)/x]`
Evaluate the following limit :
`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`
Evaluate the following limit :
`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`
Evaluate the following limit :
`lim_(x -> 0) [(8^sinx - 2^tanx)/("e"^(2x) - 1)]`
Evaluate the following limit :
`lim_(x -> 0) [(3^x + 3^-x - 2)/(x*tanx)]`
Evaluate the following limit :
`lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`
Evaluate the following limit :
`lim_(x -> 0)[(5x + 3)/(3 - 2x)]^(2/x)`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =
Evaluate the following :
`lim_(x -> 0) [((5^x - 1)^2)/((2^x - 1)log(1 + x))]`
The value of `lim_{x→-∞} (sqrt(5x^2 + 4x + 7))/(5x + 4)` is ______
If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______
`lim_(x -> 0) (log(1 + (5x)/2))/x` is equal to ______.
The value of `lim_{x→0} (1 + sinx - cosx + log_e(1 - x))/x^3` is ______
The value of `lim_{x→2} (e^{3x - 6} - 1)/(sin(2 - x))` is ______
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x+1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/(x^2)]`
Evaluate the following:
`lim_(x -> 0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x-2(5)^x+1)/x^2]`
Evaluate the limit:
`lim_(z->2)[(z^2-5x+6)/(z^2-4)]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`