Advertisements
Advertisements
Question
Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`
Solution
`lim_(x -> 0)(log(3 - x) - log(3 + x))/x`
= `lim_(x -> 0) 1/x log ((3 - x)/(3 + x))`
= `lim_(x -> 0) log((3 - x)/(3 + x))^(1/x)`
= `lim_(x -> 0) log((1 - x/3)/(1 + x/3))^(1/x)`
= `log[lim_(x -> 0) ((1 - x/3)^(1/x))/(1 + x/3)^(1/x)]`
= `log[({lim_(x -> 0)(1 - x/3)^((-3)/x)}^((-1)/3))/({lim_(x -> 0)(1 + x/3)^(3/x)}^(1/3))]`
= `log(("e"^(-1/3))/("e"^(1/3))) ...[because x -> 0"," ± x/3 ->0 and lim_(x->0)(1 + x)^(1/x) ="e"]`
= `log "e"^((-2)/3)`
= `-2/3*log "e"`
= `-2/3(1)`
= `-2/3`
APPEARS IN
RELATED QUESTIONS
Evaluate the following: `lim_(x -> 0)[(log(2 + x) - log( 2 - x))/x]`
Evaluate the following: `lim_(x -> 0) [(3^x + 3^-x - 2)/x^2]`
Evaluate the following: `lim_(x -> 0)[(15^x - 5^x - 3^x +1)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)(1 + x/5)^(1/x)`
Evaluate the following limit :
`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`
Evaluate the following limit :
`lim_(x -> 0) [(5^x + 3^x - 2^x - 1)/x]`
Evaluate the following limit :
`lim_(x ->0) [("a"^x - "b"^x)/(sin(4x) - sin(2x))]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =
If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______
`lim_(x -> 0) (log(1 + (5x)/2))/x` is equal to ______.
`lim_(x -> 0) (sin^4 3x)/x^4` = ________.
The value of `lim_{x→0} (1 + sinx - cosx + log_e(1 - x))/x^3` is ______
The value of `lim_{x→2} (e^{3x - 6} - 1)/(sin(2 - x))` is ______
`lim_(x -> 0) (15^x - 3^x - 5^x + 1)/(xtanx)` is equal to ______.
Evaluate the following :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`