English

Evaluate the following limit : limx→0[(25)x-2(5)x+1x⋅sinx] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following limit : 

`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`

Sum

Solution

`lim_(x -> 0) ((25)^x - 2(5)^x + 1)/(x*sinx)`

= `lim_(x -> 0) ((5^x)^2 - 2(5^x) + 1)/(x*sinx)  ...[(25)^x = (5^2)^x = (5^x)^2]`

= `lim_(x -> 0) ((5^x - 1)^2)/(x*sinx)`

= `lim_(x -> 0) ((5^x - 1)^2/x^2)/((x*sinx)/x^2)  ...[("Divide numerator and"),("denominator by"  x^2.),(because x -> 0","  x ≠ 0),(therefore x^2 ≠ 0)]`

= `(lim_(x -> 0)((5^x - 1)/x)^2)/(lim_(x -> 0) sinx/x)`

= `(log5)^2/1  ...[∵ lim_(x -> 0) ("a"^x - 1)/x = log"a"]`

= (log 5)2

shaalaa.com
Limits of Exponential and Logarithmic Functions
  Is there an error in this question or solution?
Chapter 7: Limits - Exercise 7.6 [Page 154]

RELATED QUESTIONS

Evaluate the following: `lim_(x -> 0) [(3^x + 3^-x - 2)/x^2]`


Evaluate the following: `lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`


Evaluate the following: `lim_(x -> 0) [(2^x - 1)^2/((3^x - 1) xx log (1 + x))]`


Evaluate the following:

`lim_(x ->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following Limits: `lim_(x -> 0)[(5^x - 1)/x]`


Evaluate the following Limits: `lim_(x -> 0)[(log(1 + 9x))/x]`


Evaluate the following Limits: `lim_(x -> 0)[(x(6^x - 3^x))/((2^x - 1)*log(1 + x))]`


Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x  + 1)/x^2]`


Evaluate the following Limits: `lim_(x -> 0)[(log 100 + log (0.01 + x))/x]`


Evaluate the following limit : 

`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`


Evaluate the following limit : 

`lim_(x -> 0) [(5^x + 3^x - 2^x - 1)/x]`


Evaluate the following limit : 

`lim_(x -> 0) [(8^sinx - 2^tanx)/("e"^(2x) - 1)]`


Evaluate the following limit : 

`lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`


Evaluate the following limit : 

`lim_(x -> 0) [(log(3 - x) - log(3 + x))/x]`


Evaluate the following limit : 

`lim_(x ->0) [("a"^x - "b"^x)/(sin(4x) - sin(2x))]`


Evaluate the following limit : 

`lim_(x -> 0)[(15^x - 5^x - 3^x + 1)/(x*sinx)]`


Evaluate the following limit :

`lim_(x -> 0) [((49)^x - 2(35)^x + (25)^x)/(sinx* log(1 + 2x))]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((3 + 5x)/(3 - 4x))^(1/x)` =


Select the correct answer from the given alternatives.

`lim_(x→0)[(3^(sinx) - 1)^3/((3^x - 1).tan x.log(1 + x))]` =


Evaluate the following :

`lim_(x -> 0)[("e"^x + "e"^-x - 2)/(x*tanx)]`


Evaluate the following :

`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`


Evaluate the following : 

`lim_(x -> 0) [((5^x - 1)^2)/((2^x - 1)log(1 + x))]`


The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is ______ 


`lim_{x→∞} ((3x + 3)^40(9x - 3)^5)/(3x + 1)^45` = ______ 


lf the function f(x) satisfies `lim_{x→1}(2f(x) - 5)/(2(x^2 - 1)) = e`, then `lim_{x→1}f(x)` is ______ 


`lim_(x -> 0) (sin^4 3x)/x^4` = ________.


`lim_(x -> 0) (15^x - 3^x - 5^x + 1)/(xtanx)` is equal to ______.


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x+1)/x^2]`


Evaluate the following limit :

`lim(x>2)[(z^2 -5z+6)/(z^2-4)]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x-2(5)^x+1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0) [((25)^x - 2(5)^x + 1)/x^2]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×