English

Evaluate the following limit: limz→-3[z+6z] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following limit:

`lim_(z -> -3) [sqrt("z" + 6)/"z"]`

Sum

Solution

`lim_(z -> -3) sqrt("z" + 6)/"z"`

= `(lim_(z -> - 3) sqrt(z + 6))/(lim_(z -> - 3) "z")   ...[because lim_(z -> -3) "z" ≠ 0]`

= `sqrt(-3 + 6)/-3`

= `sqrt(3)/-3`

= `-1/sqrt(3)`

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 7: Limits - Exercise 7.1 [Page 138]

RELATED QUESTIONS

Evaluate the following limit:

`lim_(z -> -5)[((1/z + 1/5))/(z + 5)]`


Evaluate the following limit:

`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limit:

If `lim_(x -> 1)[(x^4 - 1)/(x - 1)]` = `lim_(x -> "a")[(x^3 - "a"^3)/(x - "a")]`, find all possible values of a


Evaluate the following limit :

`lim_(x -> 1)[(x + x^2 + x^3 + ......... + x^"n" - "n")/(x - 1)]`


Evaluate the following limit :

`lim_(x -> 1) [(x + x^3 + x^5 + ... + x^(2"n" - 1) - "n")/(x - 1)]`


In problems 1 – 6, using the table estimate the value of the limit.

`lim_(x -> 2) (x - 2)/(x^2 - x - 2)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.344820 0.33444 0.33344 0.333222 0.33222 0.332258

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 2) f(x)` where `f(x) = {{:(4 - x",", x ≠ 2),(0",", x = 2):}`


Sketch the graph of a function f that satisfies the given value:

f(0) is undefined

`lim_(x -> 0) f(x)` = 4

f(2) = 6

`lim_(x -> 2) f(x)` = 3


If f(2) = 4, can you conclude anything about the limit of f(x) as x approaches 2?


Evaluate the following limits:

`lim_(x ->) (x^"m" - 1)/(x^"n" - 1)`, m and n are integers


Evaluate the following limits:

`lim_(sqrt(x) -> 3) (x^2 - 81)/(sqrt(x) - 3)`


Evaluate the following limits:

`lim_("h" -> 0) (sqrt(x + "h") - sqrt(x))/"h", x > 0`


Evaluate the following limits:

`lim_(x -> 5) (sqrt(x + 4) - 3)/(x - 5)`


Evaluate the following limits:

`lim_(x -> 1) (sqrt(x) - x^2)/(1 - sqrt(x))`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(x^2 + 1) - 1)/(sqrt(x^2 + 16) - 4)`


Evaluate the following limits:

`lim_(x -> 1) (root(3)(7 + x^3) - sqrt(3 + x^2))/(x - 1)`


Evaluate the following limits:

`lim_(x -> 2) (2 - sqrt(x + 2))/(root(3)(2) - root(3)(4 - x))`


Evaluate the following limits:

`lim_(x -> "a") (sqrt(x - "b") - sqrt("a" - "b"))/(x^2 - "a"^2) ("a" > "b")`


Evaluate the following limits:

`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9))`


Show that `lim_("n" -> oo) (1 + 2 + 3 + ... + "n")/(3"n"^2 + 7n" + 2) = 1/6`


Evaluate the following limits:

`lim_(x -> oo)(1 + "k"/x)^("m"/x)`


Evaluate the following limits:

`lim_(x -> 0) (sinalphax)/(sinbetax)`


Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/(sin 5x)`


Evaluate the following limits:

`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m"`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(x^2 + "a"^2) - "a")/(sqrt(x^2 + "b"^2) - "b")`


Evaluate the following limits:

`lim_(x -> pi) (1 + sinx)^(2"cosec"x)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + sinx) - sqrt(1 - sinx))/tanx`


Choose the correct alternative:

`lim_(x -> 0) sqrt(1 - cos 2x)/x`


Choose the correct alternative:

`lim_(theta -> 0) (sinsqrt(theta))/(sqrt(sin theta)`


Choose the correct alternative:

`lim_(x -> oo) ((x^2 + 5x + 3)/(x^2 + x + 3))^x` is


Choose the correct alternative:

`lim_(x -> 0) ("e"^tanx - "e"^x)/(tan x - x)` =


Choose the correct alternative:

The value of `lim_(x -> 0) sinx/sqrt(x^2)` is


`lim_(x -> 0) (sin 4x + sin 2x)/(sin5x - sin3x)` = ______.


The value of `lim_(x→0)(sin(ℓn e^x))^2/((e^(tan^2x) - 1))` is ______.


The value of `lim_(x rightarrow 0) (sqrt((1 + x^2)) - sqrt(1 - x^2))/x^2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×