English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Evaluate the following limits: limx→3x2-9x2(x2-6x+9) - Mathematics

Advertisements
Advertisements

Question

Evaluate the following limits:

`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9))`

Sum

Solution

`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9)) =  lim_(x -> 3) ((x + 3)(x - 3))/(x^2(x - 3)2`

= `lim_(x -> 3) (x +3)/(x^2(x - 3))`

To find he left limit

Put x = 3 – h

Where h > 0

When x → 3

We have h → 0

`lim_(x -> 3^-) (x^2 - 9)/(x^2(x^2 - 6x + 9)) =   lim_("h" -> 0) (3 - "h" + 3)/((3 - "h")^2 (3 - "h" - 3))`

= `lim_("h" -> 0) (6 - "h")/(-"h"(3- "h")^2`

= `- lim_("h" -> 0) (6 - "h")/("h"(3 - "h")^2`

= `- (6 - 0)/(0(3 - 0)^2`

= `- 6/0`

`lim_(x -> 3^-) (x^2 - 9)/(x^2(x^2 - 6x + 9)) = - oo`

To find he right limit

Put x = 3 + h

Where h > 0

When x → 3

We have h → 0

`lim_(x -> 3^+) (x^2 - 9)/(x^2(x^2 - 6x + 9)) =   lim_("h" -> 0) (3 + "h" + 3)/((3 + "h")^2 (3 + "h" - 3))`

= `lim_("h" -> 0) (6 + "h")/("h"(3 + "h")^2`

= `lim_("h" -> 0) (6 + "h")/("h"(3 + "h")^2`

= `(6 + 0)/(0(3 + 0)^2`

= `6/0`

`lim_(x -> 3^+) (x^2 - 9)/(x^2(x^2 - 6x + 9)) = oo`

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.3 [Page 111]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.3 | Q 2 | Page 111

RELATED QUESTIONS

Evaluate the following limit:

If `lim_(x -> 1)[(x^4 - 1)/(x - 1)]` = `lim_(x -> "a")[(x^3 - "a"^3)/(x - "a")]`, find all possible values of a


Evaluate the following :

`lim_(x -> 0) [(sqrt(1 - cosx))/x]`


Evaluate the following :

`lim_(x -> 1) [(x + 3x^2 + 5x^3 + ... + (2"n" - 1)x^"n" - "n"^2)/(x - 1)]`


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (cos x - 1)/x`

x – 0.1  – 0.01 – 0.001 0.0001 0.01 0.1
f(x) 0.04995 0.0049999 0.0004999 – 0.0004999 – 0.004999 – 0.04995

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) (x^2 + 2)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 2) f(x)` where `f(x) = {{:(4 - x",", x ≠ 2),(0",", x = 2):}`


Sketch the graph of a function f that satisfies the given value:

f(0) is undefined

`lim_(x -> 0) f(x)` = 4

f(2) = 6

`lim_(x -> 2) f(x)` = 3


Evaluate the following limits:

`lim_(x ->) (x^"m" - 1)/(x^"n" - 1)`, m and n are integers


Evaluate the following limits:

`lim_(x - 0) (sqrt(1 + x^2) - 1)/x`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 - x) - 1)/x^2`


Evaluate the following limits:

`lim_(x  -> oo) 3/(x - 2) - (2x + 11)/(x^2 + x - 6)`


Evaluate the following limits:

`lim_(x -> oo)(1 + 1/x)^(7x)`


Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/(sin 5x)`


Evaluate the following limits:

`lim_(x -> pi) (1 + sinx)^(2"cosec"x)`


Evaluate the following limits:

`lim_(x -> 0) ("e"^("a"x) - "e"^("b"x))/x`


Choose the correct alternative:

`lim_(x -> 3) [x]` =


Choose the correct alternative:

`lim_(x -> 0) (x"e"^x - sin x)/x` is


Choose the correct alternative:

If `lim_(x -> 0) (sin "p"x)/(tan 3x)` = 4, then the value of p is


Choose the correct alternative:

`lim_(x -> oo) (1/"n"^2 + 2/"n"^2 + 3/"n"^2 + ... + "n"/"n"^2)` is


`lim_(x→0^+)(int_0^(x^2)(sinsqrt("t"))"dt")/x^3` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×