English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

In problems 1 – 6, using the table estimate the value of the limitlimx→0cosx-1x x – 0.1 – 0.01 – 0.001 0.0001 0.01 0.1 f(x) 0.04995 0.0049999 0.0004999 – 0.0004999 – 0.004999 – 0.04995 - Mathematics

Advertisements
Advertisements

Question

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (cos x - 1)/x`

x – 0.1  – 0.01 – 0.001 0.0001 0.01 0.1
f(x) 0.04995 0.0049999 0.0004999 – 0.0004999 – 0.004999 – 0.04995
Chart

Solution

Let f(x) = `(cos x - 1)/x`

x – 0.1  – 0.01 – 0.001 0.0001 0.01 0.1
f(x)

`(cos(- 0.1) - 1)/(- 0.1)`

= `(cos(0.1) - 1)/(- 0.1)`

= `(- 0.00000152)/(- 0.1)`

= 0.00001

`(cos(- 0.01) - 1)/(- 0.01)`

= `(cos(0.01) - 1)/(- 0.01)`

= `(- 0.000001)/(- 0.01)`

= 0.00000015

`(cos(- 0.001) - 1)/(- 0.001)`

= `(cos(0.001) - 1)/(- 0.01)`

= `(- 0.0000)/(- 0.001)`

= 0.000

`(cos(0.001) - 1)/( 0.001)`

= `(cos(0.0001) - 1)/(- 0.001)`

= 0.000

`(cos(0.01) -1)/(0.01)`

= 0.000015

`(cos(0.1) -1)/(0.1)`

= 0.000000

`lim_(x -> 0) (cos x - 1)/x` = 0

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.1 [Page 95]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.1 | Q 6 | Page 95

RELATED QUESTIONS

In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2) (x^2 - 1)` = 3


Evaluate the following :

`lim_(x -> 0)[x/(|x| + x^2)]`


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (sqrt(x + 3) - sqrt(3))/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.2911 0.2891 0.2886 0.2886 0.2885 0.28631

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) sin x/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.99833 0.99998 0.99999 0.99999 0.99998 0.99833

Sketch the graph of a function f that satisfies the given value:

f(0) is undefined

`lim_(x -> 0) f(x)` = 4

f(2) = 6

`lim_(x -> 2) f(x)` = 3


Sketch the graph of a function f that satisfies the given value:

f(– 2) = 0

f(2) = 0

`lim_(x -> 2) f(x)` = 0

`lim_(x -> 2) f(x)` does not exist.


Evaluate : `lim_(x -> 3) (x^2 - 9)/(x - 3)` if it exists by finding `f(3^-)` and `f(3^+)`


Evaluate the following limits:

`lim_(x -> 2) (1/x - 1/2)/(x - 2)`


Evaluate the following limits:

`lim_(x -> "a") (sqrt(x - "b") - sqrt("a" - "b"))/(x^2 - "a"^2) ("a" > "b")`


Find the left and right limits of f(x) = `(x^2 - 4)/((x^2 + 4x+ 4)(x + 3))` at x = – 2


Evaluate the following limits:

`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9))`


Evaluate the following limits:

`lim_(x -> oo) (1 + x - 3x^3)/(1 + x^2 +3x^3)`


Evaluate the following limits:

`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`


Evaluate the following limits:

`lim_(x -> 0) (2^x - 3^x)/x`


Evaluate the following limits:

`lim_(x -> oo) x [3^(1/x) + 1 - cos(1/x) - "e"^(1/x)]`


Evaluate the following limits:

`lim_(x -> pi) (1 + sinx)^(2"cosec"x)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(2) - sqrt(1 + cosx))/(sin^2x)`


Choose the correct alternative:

`lim_(x -> oo) ((x^2 + 5x + 3)/(x^2 + x + 3))^x` is


Choose the correct alternative:

`lim_(x -> 0) (x"e"^x - sin x)/x` is


`lim_(x -> 5) |x - 5|/(x - 5)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×