हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

In problems 1 – 6, using the table estimate the value of the limitlimx→0cosx-1x x – 0.1 – 0.01 – 0.001 0.0001 0.01 0.1 f(x) 0.04995 0.0049999 0.0004999 – 0.0004999 – 0.004999 – 0.04995 - Mathematics

Advertisements
Advertisements

प्रश्न

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (cos x - 1)/x`

x – 0.1  – 0.01 – 0.001 0.0001 0.01 0.1
f(x) 0.04995 0.0049999 0.0004999 – 0.0004999 – 0.004999 – 0.04995
सारिणी

उत्तर

Let f(x) = `(cos x - 1)/x`

x – 0.1  – 0.01 – 0.001 0.0001 0.01 0.1
f(x)

`(cos(- 0.1) - 1)/(- 0.1)`

= `(cos(0.1) - 1)/(- 0.1)`

= `(- 0.00000152)/(- 0.1)`

= 0.00001

`(cos(- 0.01) - 1)/(- 0.01)`

= `(cos(0.01) - 1)/(- 0.01)`

= `(- 0.000001)/(- 0.01)`

= 0.00000015

`(cos(- 0.001) - 1)/(- 0.001)`

= `(cos(0.001) - 1)/(- 0.01)`

= `(- 0.0000)/(- 0.001)`

= 0.000

`(cos(0.001) - 1)/( 0.001)`

= `(cos(0.0001) - 1)/(- 0.001)`

= 0.000

`(cos(0.01) -1)/(0.01)`

= 0.000015

`(cos(0.1) -1)/(0.1)`

= 0.000000

`lim_(x -> 0) (cos x - 1)/x` = 0

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.1 [पृष्ठ ९५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.1 | Q 6 | पृष्ठ ९५

संबंधित प्रश्न

Evaluate the following limit :

`lim_(x -> 1)[(x + x^2 + x^3 + ......... + x^"n" - "n")/(x - 1)]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> -3) (3x + 2)` = – 7


Evaluate the following :

`lim_(x -> 0)[x/(|x| + x^2)]`


Evaluate the following :

Given that 7x ≤ f(x) ≤ 3x2 – 6 for all x. Determine the value of `lim_(x -> 3) "f"(x)`


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> - 3) (sqrt(1 - x) - 2)/(x + 3)`

x – 3.1  – 3.01 – 3.00 – 2.999 – 2.99 – 2.9
f(x) – 0.24845 – 0.24984 – 0.24998 – 0.25001 – 0.25015 – 0.25158

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) sin x/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.99833 0.99998 0.99999 0.99999 0.99998 0.99833

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) f(x)` where `f(x) = {{:(x^2 + 2",", x ≠ 1),(1",", x = 1):}`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) sin pi x`


Sketch the graph of f, then identify the values of x0 for which `lim_(x -> x_0)` f(x) exists.

f(x) = `{{:(x^2",", x ≤ 2),(8 - 2x",", 2 < x < 4),(4",", x ≥ 4):}`


Evaluate the following limits:

`lim_(sqrt(x) -> 3) (x^2 - 81)/(sqrt(x) - 3)`


Evaluate the following limits:

`lim_(x -> 2) (1/x - 1/2)/(x - 2)`


Evaluate the following limits:

`lim_(x -> 5) (sqrt(x - 1) - 2)/(x - 5)`


Evaluate the following limits:

`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9))`


Evaluate the following limits:

`lim_(x -> oo)(1 + "k"/x)^("m"/x)`


Evaluate the following limits:

`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`


Evaluate the following limits:

`lim_(x -> 0) (sin^3(x/2))/x^2`


Evaluate the following limits:

`lim_(x -> pi) (sin3x)/(sin2x)`


`lim_(x→0^+)(int_0^(x^2)(sinsqrt("t"))"dt")/x^3` is equal to ______.


`lim_(x→∞)((x + 7)/(x + 2))^(x + 4)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×