हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Evaluate the following limits: limx→πsin3xsin2x - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits:

`lim_(x -> pi) (sin3x)/(sin2x)`

योग

उत्तर

`lim_(x -> pi) (sin3x)/(sin2x) =  lim_(x -> pi) (3sin x - 4 sin^3 x)/(2sinx cos  x)`

= `lim_(x -> pi) [(3sinx)/(2sinx cosx) - (4sin^3x)/(sinx cosx)]`

= `lim_(x -> pi) [3/(2cosx) - (2sin^2x)/cosx]`

= `lim_(x -> pi) 3/(2cosx) - lim_(x -> pi) (2sin^2x)/cosx`

= `3/(2cospi) - (2sin^2pi)/cospi`

=`3/(2 xx -1) - (2 xx 0)/(-1)`

`lim_(x -> pi) (sin3x)/(sin2x) = - 3/2`

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.4 [पृष्ठ ११८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.4 | Q 20 | पृष्ठ ११८

संबंधित प्रश्न

Evaluate the following limit:

`lim_(x -> 3)[sqrt(2x + 6)/x]`


Evaluate the following limit : 

If `lim_(x -> 5) [(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


Evaluate the following limit :

`lim_(y -> 1)[(2y - 2)/(root(3)(7 + y) - 2)]`


Sketch the graph of f, then identify the values of x0 for which `lim_(x -> x_0)` f(x) exists.

f(x) = `{{:(sin x",", x < 0),(1 - cos x",", 0 ≤ x ≤ pi),(cos x",", x > pi):}`


Evaluate : `lim_(x -> 3) (x^2 - 9)/(x - 3)` if it exists by finding `f(3^-)` and `f(3^+)`


Evaluate the following limits:

`lim_(x -> 2) (1/x - 1/2)/(x - 2)`


Evaluate the following limits:

`lim_(x -> 1) (sqrt(x) - x^2)/(1 - sqrt(x))`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(x^2 + 1) - 1)/(sqrt(x^2 + 16) - 4)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + x) - 1)/x`


Evaluate the following limits:

`lim_(x -> 2) (2 - sqrt(x + 2))/(root(3)(2) - root(3)(4 - x))`


Find the left and right limits of f(x) = `(x^2 - 4)/((x^2 + 4x+ 4)(x + 3))` at x = – 2


Evaluate the following limits:

`lim_(x  -> oo) 3/(x - 2) - (2x + 11)/(x^2 + x - 6)`


Evaluate the following limits:

`lim_(x -> 0) (2 "arc"sinx)/(3x)`


Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/x`


Evaluate the following limits:

`lim_(x -> oo) x [3^(1/x) + 1 - cos(1/x) - "e"^(1/x)]`


Evaluate the following limits:

`lim_(x - oo){x[log(x + "a") - log(x)]}`


Evaluate the following limits:

`lim_(x -> 0) (tan x - sin x)/x^3`


Choose the correct alternative:

`lim_(x -> oo) ((x^2 + 5x + 3)/(x^2 + x + 3))^x` is


Choose the correct alternative:

If `f(x) = x(- 1)^([1/x])`, x ≤ 0, then the value of `lim_(x -> 0) f(x)` is equal to


Choose the correct alternative:

`lim_(x -> 0) ("e"^(sin x) - 1)/x` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×