हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Find the left and right limits of f(x) = x2-4(x2+4x+4)(x+3) at x = – 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the left and right limits of f(x) = `(x^2 - 4)/((x^2 + 4x+ 4)(x + 3))` at x = – 2

योग

उत्तर

f(x) = `(x^2 - 4)/((x^2 + 4x+ 4)(x + 3))` at x = – 2

f(x) = `((x + 2)(x - 2))/((x + 2)^2 (x + 3))`

f(x) = `(x - 2)/((x +2)(x +3))`

o find the let imit of f(x) at x = – 2

Put x = – 2 – h

Where h > 0

When x →  – 2

We have h → 0

`lim_(x -> - 2^-) f(x) =  lim_("h" -> 0) ((-2 - "h")- 2)/((-2  "h" + 2)(- 2 - "h" + 3)`

= `lim_("h" -> 0) (-4 - "h")/((- "h")(1 - "h"))`

=`lim_("h" -> 0) 1/"h" ((4 + "h")/(1 - "h"))`

= `1/0 ((4 + 0)/(1 - 0))`

= `oo`

`lim_(x -> - 2^-) f(x) = oo`

o find the right limit of f(x) at x = – 2

Put x = – 2 + h

Where h > 0

When x →  – 2

We have h → 0

`lim_(x -> - 2) f(x) =  lim_("h" -> 0) ((-2 + "h") - 2)/((-2 + "h" + 2)(-2 + "h" + 3))`

= `lim_("h" -> 0) (-4 + "h")/("h"(1 + "h"))`

= `lim_("h" -> 0) 1/"h"(("h" - 4)/(1 +"h"))`

= `1/0 ((0 - 4)/(1 + 0))`

= `- oo`

`lim_(x -> - 2^-) f(x) = - oo`

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.3 [पृष्ठ १११]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.3 | Q 1. (a) | पृष्ठ १११

संबंधित प्रश्न

Evaluate the following limit:

`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limit:

If `lim_(x -> 1)[(x^4 - 1)/(x - 1)]` = `lim_(x -> "a")[(x^3 - "a"^3)/(x - "a")]`, find all possible values of a


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2) (x^2 - 1)` = 3


Evaluate the following :

Given that 7x ≤ f(x) ≤ 3x2 – 6 for all x. Determine the value of `lim_(x -> 3) "f"(x)`


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (sqrt(x + 3) - sqrt(3))/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.2911 0.2891 0.2886 0.2886 0.2885 0.28631

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> x/2) tan x`


If f(2) = 4, can you conclude anything about the limit of f(x) as x approaches 2?


Evaluate the following limits:

`lim_(x - 0) (sqrt(1 + x^2) - 1)/x`


Evaluate the following limits:

`lim_(x -> oo) (x^4 - 5x)/(x^2 - 3x + 1)`


Evaluate the following limits:

`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`


Evaluate the following limits:

`lim_(x -> 0) (2 "arc"sinx)/(3x)`


Evaluate the following limits:

`lim_(x -> 0) (2^x - 3^x)/x`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + sinx) - sqrt(1 - sinx))/tanx`


Choose the correct alternative:

`lim_(x -> oo) sinx/x`


Choose the correct alternative:

`lim_(x -> oo) ((x^2 + 5x + 3)/(x^2 + x + 3))^x` is


Choose the correct alternative:

If `lim_(x -> 0) (sin "p"x)/(tan 3x)` = 4, then the value of p is


If `lim_(x->1)(x^5-1)/(x-1)=lim_(x->k)(x^4-k^4)/(x^3-k^3),` then k = ______.


`lim_(x→-1) (x^3 - 2x - 1)/(x^5 - 2x - 1)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×