हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Find the left and right limits of f(x) = tan x at x = π2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the left and right limits of f(x) = tan x at x = `pi/2`

योग

उत्तर

To find the left limit of f(x) at x = `pi/2`

Put x = `pi/2 - "h"`

Whee h > 0

When `x -> pi/2`

We have h → 0

`lim_(x -> pi^-/2) (tan x) =  lim_("h" -> 0) tan(pi/2 - "h")`

= `lim_("h" -> 0) cot "h"`

= cot (0)

= `oo`

`lim_(x -> pi^-/2) (tan x) = oo`

To find the right limit of f(x) at x = `pi/2`

Put x = `pi/2 + "h"`

Whee h > 0

When `x -> pi/2`

We have h → 0

`lim_(x -> pi^+/2) (tan x) =  lim_("h" -> 0) tan(pi/2 + "h")`

= `lim_("h" -> 0) (- cot"h")`

= `- lim_("h" -> 0) cot "h"`

`lim_(x -> pi^+/2) (tan x)` = – cot 0

= `- oo`

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.3 [पृष्ठ १११]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.3 | Q 1. (b) | पृष्ठ १११

संबंधित प्रश्न

Evaluate the following limit:

`lim_(z -> -5)[((1/z + 1/5))/(z + 5)]`


Evaluate the following limit:

`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limit :

`lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> -3) (3x + 2)` = – 7


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 0) sec x`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> x/2) tan x`


Show that  `lim_("n" -> oo) (1^2 + 2^2 + ... + (3"n")^2)/((1 + 2 + ... + 5"n")(2"n" + 3)) = 9/25`


A tank contains 5000 litres of pure water. Brine (very salty water) that contains 30 grams of salt per litre of water is pumped into the tank at a rate of 25 litres per minute. The concentration of salt water after t minutes (in grams per litre) is C(t) = `(30"t")/(200 + "t")`. What happens to the concentration as t → ∞?


Evaluate the following limits:

`lim_(x -> 0)(1 + x)^(1/(3x))`


Evaluate the following limits:

`lim_(x -> oo)(1 + "k"/x)^("m"/x)`


Evaluate the following limits:

`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m"`


Evaluate the following limits:

`lim_(x -> 0) (3^x - 1)/(sqrt(x + 1) - 1)`


Evaluate the following limits:

`lim_(x -> 0) (1 - cos^2x)/(x sin2x)`


Evaluate the following limits:

`lim_(x -> oo) x [3^(1/x) + 1 - cos(1/x) - "e"^(1/x)]`


Choose the correct alternative:

`lim_(x - pi/2) (2x - pi)/cos x`


Choose the correct alternative:

`lim_(theta -> 0) (sinsqrt(theta))/(sqrt(sin theta)`


If `lim_(x->1)(x^5-1)/(x-1)=lim_(x->k)(x^4-k^4)/(x^3-k^3),` then k = ______.


`lim_(x→-1) (x^3 - 2x - 1)/(x^5 - 2x - 1)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×