हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Evaluate the following limits: limx→03x-1x+1-1 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits:

`lim_(x -> 0) (3^x - 1)/(sqrt(x + 1) - 1)`

योग

उत्तर

We know `lim_(x -> 0) ("a"^x - 1)/x = log "a", "a" > 0`

`lim_(x -> 0) ((3^x- 1)/(sqrt(x + 1) - 1)) =  lim_(x -> 0) ((3^x - 1)/(sqrt(x + 1) - 1)) xx (sqrt(x + 1) + 1)/(sqrt(x + 1) + 1)`

= `lim_(x -> 0) ((3^x - 1) (sqrt(x + 1) + 1))/(x + 1 - 1)`

= `lim_(x -> 0) ((3^x - 1) (sqrt(x + 1) + 1))/x`

= `lim_(x -> 0) ((3^x - 1)/x) xx lim_(x -> 0) (sqrt(x + 1) + 1)`

= `log 3 xx (sqrt(0 + 1) + 1)`

= `log 3 xx (1 + 1)`

 = 2 log 3

= log 32

`lim_(x -> 0) (3^x - 1)/(sqrt(x + 1) - 1) = log 9`

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.4 [पृष्ठ ११८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.4 | Q 16 | पृष्ठ ११८

संबंधित प्रश्न

Evaluate the following limit:

`lim_(z -> -3) [sqrt("z" + 6)/"z"]`


Evaluate the following limit :

`lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`


Evaluate the following limit :

`lim_(y -> 1)[(2y - 2)/(root(3)(7 + y) - 2)]`


In problems 1 – 6, using the table estimate the value of the limit.

`lim_(x -> 2) (x - 2)/(x^2 - x - 2)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.344820 0.33444 0.33344 0.333222 0.33222 0.332258

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> - 3) (sqrt(1 - x) - 2)/(x + 3)`

x – 3.1  – 3.01 – 3.00 – 2.999 – 2.99 – 2.9
f(x) – 0.24845 – 0.24984 – 0.24998 – 0.25001 – 0.25015 – 0.25158

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 2) f(x)` where `f(x) = {{:(4 - x",", x ≠ 2),(0",", x = 2):}`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> x/2) tan x`


If f(2) = 4, can you conclude anything about the limit of f(x) as x approaches 2?


Evaluate the following limits:

`lim_(x -> 1) (root(3)(7 + x^3) - sqrt(3 + x^2))/(x - 1)`


Evaluate the following limits:

`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9))`


Evaluate the following limits:

`lim_(x ->oo) (x^3/(2x^2 - 1) - x^2/(2x + 1))`


Show that `lim_("n" -> oo) 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/("n"("n" + 1))` = 1


Evaluate the following limits:

`lim_(x -> oo) x [3^(1/x) + 1 - cos(1/x) - "e"^(1/x)]`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + sinx) - sqrt(1 - sinx))/tanx`


Choose the correct alternative:

`lim_(x -> oo) sinx/x`


Choose the correct alternative:

`lim_(x - pi/2) (2x - pi)/cos x`


If `lim_(x->1)(x^5-1)/(x-1)=lim_(x->k)(x^4-k^4)/(x^3-k^3),` then k = ______.


`lim_(x→∞)((x + 7)/(x + 2))^(x + 4)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×