Advertisements
Advertisements
प्रश्न
Evaluate the following limits:
`lim_(x -> 1) (root(3)(7 + x^3) - sqrt(3 + x^2))/(x - 1)`
उत्तर
`lim_(x -> 1) (root(3)(7 + x^3) - sqrt(3 + x^2))/(x - 1) = lim_(x -> 1) (root(3)(7 + x^2) - 2 + 2 sqrt(3 + x^2))/(x - 1)`
= `lim_(x -> 1) ((7 + x^3)^(1/3) - 2)/(x - 1) - lim_(x -> 1) ((3 + x^2)^(1/2) - 2)/(x - 1)`
= `lim_(x -> 1) ((7 + x^3)^(1/3) - (8)^(1/3))/(x^3 - 1) xx (x^3 - 1)/(x - 1) - lim_(x -> 1) ((3 + x^2)^(1/2) - (4)^(1/2))/(x^2 - 1) xx (x^2 - 1)/(x - 1)`
= `lim_(x -> 1) ((7 + x^3)^(1/3) - (8)^(1/2))/((7 + x^3) - 8) xx ((x - 1)(x^2 + x + 1))/(x - 1) - lim_(x -> 0) ((3 + x^2)^(1/2) - (4)^(1/2))/((3 + x^2) - 4) xx ((x + 1)(x - 1))/(x - 1)`
= `lim_(x -> 1) ((7 + x^3)^(1/3) - (8)^(1/2))/((7 + x^3) - 8) xx (x^2 + x + 1) - lim_(x _> 1) ((3 + x^2)^(4)^(1/2))/((3 + x^2) - 4) xx (x + 1)`
`lim_(x -> "a") (x^"n" - "a"^"n") = "na"^("n" - 1)`
= `1/3(8)^(1/3 - 1) (1^2 + 1 + 1) - 1/2(4)^(1/2 - 1) (1 + 1)`
= `1/3(8)^(-2/3) (3) - 1/2 xx (4)^(-1/2) xx (2)`
= `(2^3)^(-2/3) - (2^2)^(- 1/2)`
= `2^(-2) - 2^(-1)`
= `1/2^2 - 1/2`
= `1/4 - 1/2`
= `(1 - 2)/4`
= `- 1/4`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit :
`lim_(x -> 1)[(x + x^2 + x^3 + ......... + x^"n" - "n")/(x - 1)]`
Evaluate the following limit :
`lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`
Evaluate the following limit :
`lim_(z -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`
In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.
`lim_(x -> -3) (3x + 2)` = – 7
In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (sqrt(x + 3) - sqrt(3))/x`
x | – 0.1 | – 0.01 | – 0.001 | 0.001 | 0.01 | 0.1 |
f(x) | 0.2911 | 0.2891 | 0.2886 | 0.2886 | 0.2885 | 0.28631 |
In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?
`lim_(x -> 2) f(x)` where `f(x) = {{:(4 - x",", x ≠ 2),(0",", x = 2):}`
If the limit of f(x) as x approaches 2 is 4, can you conclude anything about f(2)? Explain reasoning
Evaluate the following limits:
`lim_(x -> 1) (sqrt(x) - x^2)/(1 - sqrt(x))`
Evaluate the following limits:
`lim_(x - 0) (sqrt(1 + x^2) - 1)/x`
Find the left and right limits of f(x) = `(x^2 - 4)/((x^2 + 4x+ 4)(x + 3))` at x = – 2
Evaluate the following limits:
`lim_(x -> oo) (1 + x - 3x^3)/(1 + x^2 +3x^3)`
Show that `lim_("n" -> oo) 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/("n"("n" + 1))` = 1
Evaluate the following limits:
`lim_(x -> 0) (tan 2x)/(sin 5x)`
Evaluate the following limits:
`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m"`
Evaluate the following limits:
`lim_(x -> 0) (sin("a" + x) - sin("a" - x))/x`
Evaluate the following limits:
`lim_(x -> 0) (tan x - sin x)/x^3`
Choose the correct alternative:
`lim_(x - oo) sqrt(x^2 - 1)/(2x + 1)` =
`lim_(x -> 5) |x - 5|/(x - 5)` = ______.
`lim_(x→∞)((x + 7)/(x + 2))^(x + 4)` is ______.