हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Evaluate the following limits: limx→∞1+x-3x31+x2+3x3 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits:

`lim_(x -> oo) (1 + x - 3x^3)/(1 + x^2 +3x^3)`

योग

उत्तर

`lim_(x -> oo) (1 + x - 3x^3)/(1 + x^2 +3x^3) = lim_(x - oo) (x^3(1/x^3 + x/x^3 - 3))/(x^3 (1/x^3 + x^2/x^3 + 3))`

= `lim_(x -> oo) ((1/x^3 + 1/x^2 - 3)/(1/x^3 + 1/x + 3))`

= `((1/oo + 1/oo - 3)/(1/oo + 1/oo + 3))`

= `(0 + 0 - 3)/(0 + 0 + 3)`

= `(-3)/3`

`lim_(x -> oo) (1 + x - 3x^3)/(1 + x^2 +3x^3)` = – 1

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.3 [पृष्ठ १११]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.3 | Q 6 | पृष्ठ १११

संबंधित प्रश्न

Evaluate the following limit:

`lim_(y -> -3) [(y^5 + 243)/(y^3 + 27)]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2)(2x + 3)` = 7


Evaluate the following :

`lim_(x -> 1) [(x + 3x^2 + 5x^3 + ... + (2"n" - 1)x^"n" - "n"^2)/(x - 1)]`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) f(x)` where `f(x) = {{:(x^2 + 2",", x ≠ 1),(1",", x = 1):}`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) sin pi x`


Sketch the graph of f, then identify the values of x0 for which `lim_(x -> x_0)` f(x) exists.

f(x) = `{{:(sin x",", x < 0),(1 - cos x",", 0 ≤ x ≤ pi),(cos x",", x > pi):}`


If the limit of f(x) as x approaches 2 is 4, can you conclude anything about f(2)? Explain reasoning


Verify the existence of `lim_(x -> 1) f(x)`, where `f(x) = {{:((|x - 1|)/(x - 1)",",  "for"  x ≠ 1),(0",",  "for"  x = 1):}`


Evaluate the following limits:

`lim_(x ->) (x^"m" - 1)/(x^"n" - 1)`, m and n are integers


Find the left and right limits of f(x) = `(x^2 - 4)/((x^2 + 4x+ 4)(x + 3))` at x = – 2


A tank contains 5000 litres of pure water. Brine (very salty water) that contains 30 grams of salt per litre of water is pumped into the tank at a rate of 25 litres per minute. The concentration of salt water after t minutes (in grams per litre) is C(t) = `(30"t")/(200 + "t")`. What happens to the concentration as t → ∞?


Evaluate the following limits:

`lim_(x -> 0) (sin^3(x/2))/x^2`


Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/(sin 5x)`


Evaluate the following limits:

`lim_(x -> pi) (1 + sinx)^(2"cosec"x)`


Evaluate the following limits:

`lim_(x -> 0) (tan x - sin x)/x^3`


Choose the correct alternative:

`lim_(x - pi/2) (2x - pi)/cos x`


Choose the correct alternative:

If `f(x) = x(- 1)^([1/x])`, x ≤ 0, then the value of `lim_(x -> 0) f(x)` is equal to


Choose the correct alternative:

`lim_(alpha - pi/4) (sin alpha - cos alpha)/(alpha - pi/4)` is


`lim_(x -> 5) |x - 5|/(x - 5)` = ______.


The value of `lim_(x rightarrow 0) (sqrt((1 + x^2)) - sqrt(1 - x^2))/x^2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×