हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Evaluate the following limits: limx→∞(x32x2-1-x22+1) - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits:

`lim_(x ->oo) (x^3/(2x^2 - 1) - x^2/(2x + 1))`

योग

उत्तर

`lim_(x ->oo) (x^3/(2x^2 - 1) - x^2/(2x + 1)) = lim_(x -> oo) [(x^2(2x + 1) - x^2(2x^2 - 1))/((2x^2 - 1)(2x + 1))]`

= `lim_(x -> oo) [(2x^4 + x^3 - 2x^4 +x^2)/((2x^2 - 1)(2x + 1))]`

= `lim_(x -> oo) [(x^3 + x^2)/((2x^2 - 1)(2x + 1))]`

= `lim_(x - oo) [(x^3 (1 + x^2/x^3))/(x^2(2 - 1/x^2) xx (2 + 1/x))]`

= `lim_(x - oo) [((1 + 1/x))/((2 - 1/x^2) (2 + 1/x))]`

= `((1 + 1/oo))/((2 - 1/oo) (2 + 1/oo))`

= `(1 + 0)/((2 - 0) (2 + 0))`

`lim_(x ->oo) (x^3/(2x^2 - 1) - x^2/(2x + 1)) = 1/4`

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.3 [पृष्ठ १११]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.3 | Q 7 | पृष्ठ १११

संबंधित प्रश्न

Evaluate the following limit :

`lim_(x -> 1)[(x + x^2 + x^3 + ......... + x^"n" - "n")/(x - 1)]`


Evaluate the following limit :

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Evaluate the following limit : 

If `lim_(x -> 5) [(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (cos x - 1)/x`

x – 0.1  – 0.01 – 0.001 0.0001 0.01 0.1
f(x) 0.04995 0.0049999 0.0004999 – 0.0004999 – 0.004999 – 0.04995

Sketch the graph of f, then identify the values of x0 for which `lim_(x -> x_0)` f(x) exists.

f(x) = `{{:(x^2",", x ≤ 2),(8 - 2x",", 2 < x < 4),(4",", x ≥ 4):}`


Evaluate the following limits:

`lim_(x -> 2) (x^4 - 16)/(x - 2)`


Evaluate the following limits:

`lim_(x -> oo) (x^3 + x)/(x^4 - 3x^2 + 1)`


Evaluate the following limits:

`lim_(x -> oo) (1 + x - 3x^3)/(1 + x^2 +3x^3)`


Show that `lim_("n" -> oo) 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/("n"("n" + 1))` = 1


An important problem in fishery science is to estimate the number of fish presently spawning in streams and use this information to predict the number of mature fish or “recruits” that will return to the rivers during the reproductive period. If S is the number of spawners and R the number of recruits, “Beverton-Holt spawner recruit function” is R(S) = `"S"/((alpha"S" + beta)` where `alpha` and `beta` are positive constants. Show that this function predicts approximately constant recruitment when the number of spawners is sufficiently large


Evaluate the following limits:

`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`


Evaluate the following limits:

`lim_(x -> 0) (sin("a" + x) - sin("a" - x))/x`


Evaluate the following limits:

`lim_(x -> 0) (2^x - 3^x)/x`


Evaluate the following limits:

`lim_(x -> pi) (1 + sinx)^(2"cosec"x)`


Evaluate the following limits:

`lim_(x -> oo) ((x^2 - 2x + 1)/(x^2 -4x + 2))^x`


Evaluate the following limits:

`lim_(x -> ) (sinx(1 - cosx))/x^3`


Choose the correct alternative:

`lim_(x - oo) sqrt(x^2 - 1)/(2x + 1)` =


Choose the correct alternative:

`lim_(x -> 0) ("a"^x - "b"^x)/x` =


Choose the correct alternative:

If `lim_(x -> 0) (sin "p"x)/(tan 3x)` = 4, then the value of p is


`lim_(x -> 5) |x - 5|/(x - 5)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×