Advertisements
Advertisements
प्रश्न
Evaluate the following limits:
`lim_(x -> 0) (sin("a" + x) - sin("a" - x))/x`
उत्तर
We know `lim_(x -> 0) (sinx)/x` = 1
Sin C – sin D = `2 cos ("C" + "D")/2 * sin ("C" - "D")/2`
`sin("a" + x) - sin("a" - x) = 2 cos(("a" + x + "a" - x)/2) xx sin(("a" + x ("a" - x))/2)`
= `2 cos ((2"a")/2) sin (("a" + x - "a" + x)/2)`
= `2 cos "a" * sin ((2x)/2)`
= 2 cos a sin x
`lim_(x -> 0) (sin("a" + x) - sin("a" - x))/x = lim_(x -> 0) (2 cos "a" sin x)/x`
= `2cos "a" lim_(x -> 0) (sinx)/x`
= `2 cos "a" xx 1`
= 2 cos a
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit:
`lim_(z -> -3) [sqrt("z" + 6)/"z"]`
Evaluate the following limit:
`lim_(y -> -3) [(y^5 + 243)/(y^3 + 27)]`
Evaluate the following limit:
If `lim_(x -> 1)[(x^4 - 1)/(x - 1)]` = `lim_(x -> "a")[(x^3 - "a"^3)/(x - "a")]`, find all possible values of a
Evaluate the following limit :
`lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`
In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?
`lim_(x -> 3) 1/(x - 3)`
In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?
`lim_(x -> 5) |x - 5|/(x - 5)`
In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?
`lim_(x -> x/2) tan x`
Evaluate : `lim_(x -> 3) (x^2 - 9)/(x - 3)` if it exists by finding `f(3^-)` and `f(3^+)`
Evaluate the following limits:
`lim_(sqrt(x) -> 3) (x^2 - 81)/(sqrt(x) - 3)`
Find the left and right limits of f(x) = tan x at x = `pi/2`
Show that `lim_("n" -> oo) (1^2 + 2^2 + ... + (3"n")^2)/((1 + 2 + ... + 5"n")(2"n" + 3)) = 9/25`
Evaluate the following limits:
`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`
Evaluate the following limits:
`lim_(x -> oo) x [3^(1/x) + 1 - cos(1/x) - "e"^(1/x)]`
Choose the correct alternative:
`lim_(x -> oo) sinx/x`
Choose the correct alternative:
`lim_(x -> 0) sqrt(1 - cos 2x)/x`
Choose the correct alternative:
`lim_(x -> 0) ("a"^x - "b"^x)/x` =
Choose the correct alternative:
`lim_(x -> 3) [x]` =
Choose the correct alternative:
The value of `lim_(x -> 0) sinx/sqrt(x^2)` is