हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Evaluate the following limits: elimx→∞×[31x+1-cos(1x)-e1x] - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits:

`lim_(x -> oo) x [3^(1/x) + 1 - cos(1/x) - "e"^(1/x)]`

योग

उत्तर

We know `lim_(x -> 0) ("e"^x - 1)/x` = 1

`lim_(x -> 0) ("a"^x - 1)/x` = log a

`lim_(x -> 0) (1 - cosx)/x` = 0

`lim_(x -> oo) [3^(1/x) + 1 - cos(1/x) - "e"^(1/x)] =  lim_(x -> oo) [(3^(1/x) + 1 - cos(1/x) - "e"^(1/x))/(1/x)]`

= `lim_(x -> oo) [(3^(1/x) - 1 + 1 - "e"^(1/x))/(1/x) + (1 - cos(1/x))/(1/x)]`

= `lim_(x -> oo) [((3^(1/x) - 1) - ("e"^(1/x) - 1))/(1/x) + (1 - cos(1/x))/(1/x)]`

= `lim_(x > 0)[(3^(1/x) - 1)/(1/x) - ("e"^(1/x) - 1)/(1/x) + (1 -cos(1/x))/(1/x)]`

Put y = `1/x`

When x = `oo`

⇒ y = `1/oo` = 0

`lim_(x -> oo) x [3^(1/x) + 1 - cos(1/x) - "e"^(1/x)] =  lim_(y - 0) [(3y - 1)/y - ("e"^y - 1)/y + (1 - cosy)/y]`

= `(lim_(y -> 0) (3^y - 1)/y) -(lim_(y -> 0) ("e"^y - 1)/y) + (lim_(y -> 0) (1 -  cosy)/y)`

= `log 3 - 1 + 0`

`lim_(x -> oo) x [3^(1/x) + 1 - cos(1/x) - "e"^(1/x)] = (log 3) - 1`

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.4 [पृष्ठ ११८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.4 | Q 18 | पृष्ठ ११८

संबंधित प्रश्न

Evaluate the following limit :

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Evaluate the following limit :

`lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`


Evaluate the following limit :

`lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2)(2x + 3)` = 7


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 1) (x^2 + x + 1)` = 3


In problems 1 – 6, using the table estimate the value of the limit.

`lim_(x -> 2) (x - 2)/(x^2 - x - 2)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.344820 0.33444 0.33344 0.333222 0.33222 0.332258

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) sin x/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.99833 0.99998 0.99999 0.99999 0.99998 0.99833

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) f(x)` where `f(x) = {{:(x^2 + 2",", x ≠ 1),(1",", x = 1):}`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(x^2 + 1) - 1)/(sqrt(x^2 + 16) - 4)`


Evaluate the following limits:

`lim_(x -> 1) (root(3)(7 + x^3) - sqrt(3 + x^2))/(x - 1)`


Evaluate the following limits:

`lim_(x -> 2) (2 - sqrt(x + 2))/(root(3)(2) - root(3)(4 - x))`


Find the left and right limits of f(x) = tan x at x = `pi/2`


Show that  `lim_("n" -> oo) (1^2 + 2^2 + ... + (3"n")^2)/((1 + 2 + ... + 5"n")(2"n" + 3)) = 9/25`


Evaluate the following limits:

`lim_(x -> 0) (sinalphax)/(sinbetax)`


Evaluate the following limits:

`lim_(x -> 0) (1 - cos^2x)/(x sin2x)`


Evaluate the following limits:

`lim_(x -> oo) ((x^2 - 2x + 1)/(x^2 -4x + 2))^x`


`lim_(x -> 0) ((2 + x)^5 - 2)/((2 + x)^3 - 2)` = ______.


`lim_(x -> 5) |x - 5|/(x - 5)` = ______.


The value of `lim_(x rightarrow 0) (sqrt((1 + x^2)) - sqrt(1 - x^2))/x^2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×