हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

In problems 1 – 6, using the table estimate the value of the limit. limx→2x-2x2-x-2 x 1.9 1.99 1.999 2.001 2.01 2.1 f(x) 0.344820 0.33444 0.33344 0.333222 0.33222 0.332258 - Mathematics

Advertisements
Advertisements

प्रश्न

In problems 1 – 6, using the table estimate the value of the limit.

`lim_(x -> 2) (x - 2)/(x^2 - x - 2)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.344820 0.33444 0.33344 0.333222 0.33222 0.332258
सारिणी

उत्तर

`lim_(x -> 2) (x - 2)/(x^2 - x - 2) =  lim_(x -> 2) ( x - 2)/((x - 2)(x + 1))`

= `lim_(x -> 2) (x - 2)/(x + 1)`

1.9 1.99 1.999 2.001 20.1 2.1
f(x)

`1/(1.9 + 1)`

= `1/2.9`

= 0.34

`1/(1.99 + 1)`

= `1/2.99`

= 0.33

`1/(1.999 + 1)`

= `1/2.99`

= 0.33

`1/(2.001 + 1)`

= `1/3.001`

= 0.33

`1/(2.01 + 1)`

= `1/3.01`

= 0.33

`1/(2.1 + 1)`

= `1/3.1`

= 0.32

`lim_(x -> 2) (x - 2)/(x^2 - x - 2)` = 0.3

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.1 [पृष्ठ ९५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.1 | Q 1 | पृष्ठ ९५

संबंधित प्रश्न

Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limit : 

If `lim_(x -> 5) [(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


Evaluate the following limit :

`lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`


Evaluate the following :

`lim_(x -> 0)[x/(|x| + x^2)]`


Evaluate the following :

Find the limit of the function, if it exists, at x = 1

f(x) = `{(7 - 4x, "for", x < 1),(x^2 + 2, "for", x ≥ 1):}`


Evaluate the following :

`lim_(x -> 0) {1/x^12 [1 - cos(x^2/2) - cos(x^4/4) + cos(x^2/2) cos(x^4/4)]}`


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) sin x/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.99833 0.99998 0.99999 0.99999 0.99998 0.99833

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (cos x - 1)/x`

x – 0.1  – 0.01 – 0.001 0.0001 0.01 0.1
f(x) 0.04995 0.0049999 0.0004999 – 0.0004999 – 0.004999 – 0.04995

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 0) sec x`


Sketch the graph of a function f that satisfies the given value:

f(0) is undefined

`lim_(x -> 0) f(x)` = 4

f(2) = 6

`lim_(x -> 2) f(x)` = 3


Evaluate the following limits:

`lim_(x -> 2) (1/x - 1/2)/(x - 2)`


Evaluate the following limits:

`lim_(x -> oo) (x^4 - 5x)/(x^2 - 3x + 1)`


Show that `lim_("n" -> oo) 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/("n"("n" + 1))` = 1


Evaluate the following limits:

`lim_(x -> 0) (sinalphax)/(sinbetax)`


Evaluate the following limits:

`lim_(x - oo){x[log(x + "a") - log(x)]}`


Evaluate the following limits:

`lim_(x -> 0) ("e"^("a"x) - "e"^("b"x))/x`


Choose the correct alternative:

`lim_(x -> oo) sinx/x`


`lim_(x -> 5) |x - 5|/(x - 5)` = ______.


The value of `lim_(x→0)(sin(ℓn e^x))^2/((e^(tan^2x) - 1))` is ______.


The value of `lim_(x rightarrow 0) (sqrt((1 + x^2)) - sqrt(1 - x^2))/x^2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×