हिंदी

Evaluate the following : limx→0{1x12[1-cos(x22)-cos(x44)+cos(x22)cos(x44)]} - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following :

`lim_(x -> 0) {1/x^12 [1 - cos(x^2/2) - cos(x^4/4) + cos(x^2/2) cos(x^4/4)]}`

योग

उत्तर

Consider `1 - cos(x^2/2) - cos(x^4/4) + cos(x^2/2) cos(x^4/4)`

= `[1 - cos(x^2/2)] - cos(x^4/4) [1 - cos(x^2/2)]`

= `[1 - cos(x^2/2)] [1 - cos(x^4/4)]`

= `[1 - cos(x^2/2)][1 - cos(x^4/4)] xx (1 + cos(x^2/2))/(1 + cos(x^2/2)) xx (1 + cos(x^4/4))/(1 + cos(x^4/4))`

= `([1 - cos^2(x^2/2)][1 - cos^2 (x^4/4)])/([1 + cos(x^2/2)][1 + cos(x^4/4)]`

= `(sin^2(x^2/2) sin^2(x^4/4))/([1 + cos(x^2/2)][1 + cos(x^4/4)]`

∴ the required limit

= `lim_(x -> 0) (sin^2(x^2/2)sin^2(x^4/4))/(x^12[1 + cos(x^2/2)][1 + cos(x^4/4)]`

= `lim_(x -> 0) (sin^2(x^2/2) sin^2 (x^4/4))/(x^4/4 xx x^8/16 [1 + cos(x^2/2)][1 + cos(x^4/4)]) xx 1/64`

= `1/64([lim_(x -> 0) (sin(x^2/2))/((x^2/2))]^2 xx  [lim_(x -> 0) (sin(x^4/4))/((x^4/4))]^2)/([lim_(x -> 0) {1 + cos(x^2/2)}] xx [lim_(x -> 0) {1 + cos(x^4/4)}]`

= `1/64 (1^2 xx 1^2)/((1 + cos 0)(1 + cos 0))   ...[(because x -> 0  therefore x^2/2 -> 0","  x^4/4 -> 0),("and" lim_(theta -> 0) sintheta/theta = 1)]`

= `1/64 xx 1/(2 xx 2)`

= `1/256`

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - Miscellaneous Exercise 7.2 [पृष्ठ १५९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Limits
Miscellaneous Exercise 7.2 | Q II. (23) | पृष्ठ १५९

संबंधित प्रश्न

Evaluate the following limit :

`lim_(x -> 1)[(x + x^2 + x^3 + ......... + x^"n" - "n")/(x - 1)]`


Evaluate the following limit :

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Evaluate the following limit :

`lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`


Evaluate the following limit :

`lim_(y -> 1)[(2y - 2)/(root(3)(7 + y) - 2)]`


Evaluate the following limit :

`lim_(x -> 1) [(x + x^3 + x^5 + ... + x^(2"n" - 1) - "n")/(x - 1)]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2)(2x + 3)` = 7


Evaluate the following :

Find the limit of the function, if it exists, at x = 1

f(x) = `{(7 - 4x, "for", x < 1),(x^2 + 2, "for", x ≥ 1):}`


Evaluate the following :

`lim_(x -> 1) [(x + 3x^2 + 5x^3 + ... + (2"n" - 1)x^"n" - "n"^2)/(x - 1)]`


In problems 1 – 6, using the table estimate the value of the limit.

`lim_(x -> 2) (x - 2)/(x^2 - x - 2)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.344820 0.33444 0.33344 0.333222 0.33222 0.332258

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (sqrt(x + 3) - sqrt(3))/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.2911 0.2891 0.2886 0.2886 0.2885 0.28631

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) sin x/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.99833 0.99998 0.99999 0.99999 0.99998 0.99833

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 5) |x - 5|/(x - 5)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> x/2) tan x`


Write a brief description of the meaning of the notation `lim_(x -> 8) f(x)` = 25


If the limit of f(x) as x approaches 2 is 4, can you conclude anything about f(2)? Explain reasoning


Evaluate the following limits:

`lim_(x - 0) (sqrt(1 + x^2) - 1)/x`


Find the left and right limits of f(x) = `(x^2 - 4)/((x^2 + 4x+ 4)(x + 3))` at x = – 2


Evaluate the following limits:

`lim_(x  -> oo) 3/(x - 2) - (2x + 11)/(x^2 + x - 6)`


Evaluate the following limits:

`lim_(x -> oo) (x^4 - 5x)/(x^2 - 3x + 1)`


Evaluate the following limits:

`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`


Evaluate the following limits:

`lim_(x -> oo) (1 + 3/x)^(x + 2)`


Evaluate the following limits:

`lim_(x - oo){x[log(x + "a") - log(x)]}`


Evaluate the following limits:

`lim_(x -> pi) (sin3x)/(sin2x)`


Evaluate the following limits:

`lim_(x -> pi) (1 + sinx)^(2"cosec"x)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(2) - sqrt(1 + cosx))/(sin^2x)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + sinx) - sqrt(1 - sinx))/tanx`


Evaluate the following limits:

`lim_(x -> ) (sinx(1 - cosx))/x^3`


Choose the correct alternative:

`lim_(x - pi/2) (2x - pi)/cos x`


Choose the correct alternative:

`lim_(x -> 0) (8^x - 4x - 2^x + 1^x)/x^2` =


Choose the correct alternative:

If `lim_(x -> 0) (sin "p"x)/(tan 3x)` = 4, then the value of p is


Choose the correct alternative:

`lim_(x -> 0) ("e"^tanx - "e"^x)/(tan x - x)` =


If `lim_(x->1)(x^5-1)/(x-1)=lim_(x->k)(x^4-k^4)/(x^3-k^3),` then k = ______.


`lim_(x -> 0) (sin 4x + sin 2x)/(sin5x - sin3x)` = ______.


`lim_(x→0^+)(int_0^(x^2)(sinsqrt("t"))"dt")/x^3` is equal to ______.


`lim_(x→-1) (x^3 - 2x - 1)/(x^5 - 2x - 1)` = ______.


The value of `lim_(x→0)(sin(ℓn e^x))^2/((e^(tan^2x) - 1))` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×