English

Evaluate the following : limx→0{1x12[1-cos(x22)-cos(x44)+cos(x22)cos(x44)]} - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following :

`lim_(x -> 0) {1/x^12 [1 - cos(x^2/2) - cos(x^4/4) + cos(x^2/2) cos(x^4/4)]}`

Sum

Solution

Consider `1 - cos(x^2/2) - cos(x^4/4) + cos(x^2/2) cos(x^4/4)`

= `[1 - cos(x^2/2)] - cos(x^4/4) [1 - cos(x^2/2)]`

= `[1 - cos(x^2/2)] [1 - cos(x^4/4)]`

= `[1 - cos(x^2/2)][1 - cos(x^4/4)] xx (1 + cos(x^2/2))/(1 + cos(x^2/2)) xx (1 + cos(x^4/4))/(1 + cos(x^4/4))`

= `([1 - cos^2(x^2/2)][1 - cos^2 (x^4/4)])/([1 + cos(x^2/2)][1 + cos(x^4/4)]`

= `(sin^2(x^2/2) sin^2(x^4/4))/([1 + cos(x^2/2)][1 + cos(x^4/4)]`

∴ the required limit

= `lim_(x -> 0) (sin^2(x^2/2)sin^2(x^4/4))/(x^12[1 + cos(x^2/2)][1 + cos(x^4/4)]`

= `lim_(x -> 0) (sin^2(x^2/2) sin^2 (x^4/4))/(x^4/4 xx x^8/16 [1 + cos(x^2/2)][1 + cos(x^4/4)]) xx 1/64`

= `1/64([lim_(x -> 0) (sin(x^2/2))/((x^2/2))]^2 xx  [lim_(x -> 0) (sin(x^4/4))/((x^4/4))]^2)/([lim_(x -> 0) {1 + cos(x^2/2)}] xx [lim_(x -> 0) {1 + cos(x^4/4)}]`

= `1/64 (1^2 xx 1^2)/((1 + cos 0)(1 + cos 0))   ...[(because x -> 0  therefore x^2/2 -> 0","  x^4/4 -> 0),("and" lim_(theta -> 0) sintheta/theta = 1)]`

= `1/64 xx 1/(2 xx 2)`

= `1/256`

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 7: Limits - Miscellaneous Exercise 7.2 [Page 159]

APPEARS IN

RELATED QUESTIONS

Evaluate the following limit:

`lim_(z -> -3) [sqrt("z" + 6)/"z"]`


Evaluate the following limit:

`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limit:

If `lim_(x -> 1)[(x^4 - 1)/(x - 1)]` = `lim_(x -> "a")[(x^3 - "a"^3)/(x - "a")]`, find all possible values of a


Evaluate the following limit :

`lim_(x -> 1)[(x + x^2 + x^3 + ......... + x^"n" - "n")/(x - 1)]`


Evaluate the following limit :

`lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`


Evaluate the following :

`lim_(x -> 0)[x/(|x| + x^2)]`


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (sqrt(x + 3) - sqrt(3))/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.2911 0.2891 0.2886 0.2886 0.2885 0.28631

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 3) 1/(x - 3)`


Sketch the graph of a function f that satisfies the given value:

f(– 2) = 0

f(2) = 0

`lim_(x -> 2) f(x)` = 0

`lim_(x -> 2) f(x)` does not exist.


If f(2) = 4, can you conclude anything about the limit of f(x) as x approaches 2?


If the limit of f(x) as x approaches 2 is 4, can you conclude anything about f(2)? Explain reasoning


Evaluate the following limits:

`lim_(x ->) (x^"m" - 1)/(x^"n" - 1)`, m and n are integers


Evaluate the following limits:

`lim_(x -> 2) (1/x - 1/2)/(x - 2)`


Evaluate the following limits:

`lim_(x -> 2) (2 - sqrt(x + 2))/(root(3)(2) - root(3)(4 - x))`


Evaluate the following limits:

`lim_(x - 0) (sqrt(1 + x^2) - 1)/x`


Evaluate the following limits:

`lim_(x -> oo) (x^3 + x)/(x^4 - 3x^2 + 1)`


Evaluate the following limits:

`lim_(x -> oo) (x^4 - 5x)/(x^2 - 3x + 1)`


Evaluate the following limits:

`lim_(x ->oo) (x^3/(2x^2 - 1) - x^2/(2x + 1))`


Show that `lim_("n" -> oo) 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/("n"("n" + 1))` = 1


A tank contains 5000 litres of pure water. Brine (very salty water) that contains 30 grams of salt per litre of water is pumped into the tank at a rate of 25 litres per minute. The concentration of salt water after t minutes (in grams per litre) is C(t) = `(30"t")/(200 + "t")`. What happens to the concentration as t → ∞?


Evaluate the following limits:

`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`


Evaluate the following limits:

`lim_(x -> 0) (sinalphax)/(sinbetax)`


Evaluate the following limits:

`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m"`


Evaluate the following limits:

`lim_(x -> 0) (sin("a" + x) - sin("a" - x))/x`


Evaluate the following limits:

`lim_(x -> 0) (2 "arc"sinx)/(3x)`


Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/x`


Evaluate the following limits:

`lim_(x -> 0) (1 - cos^2x)/(x sin2x)`


Evaluate the following limits:

`lim_(x -> oo) x [3^(1/x) + 1 - cos(1/x) - "e"^(1/x)]`


Evaluate the following limits:

`lim_(x -> pi) (1 + sinx)^(2"cosec"x)`


Evaluate the following limits:

`lim_(x -> oo) ((x^2 - 2x + 1)/(x^2 -4x + 2))^x`


Evaluate the following limits:

`lim_(x -> ) (sinx(1 - cosx))/x^3`


Choose the correct alternative:

`lim_(x -> 0) sqrt(1 - cos 2x)/x`


Choose the correct alternative:

`lim_(x -> 0) (8^x - 4x - 2^x + 1^x)/x^2` =


Choose the correct alternative:

`lim_(x -> 0) (x"e"^x - sin x)/x` is


Choose the correct alternative:

`lim_(x -> 0) ("e"^tanx - "e"^x)/(tan x - x)` =


`lim_(x→0^+)(int_0^(x^2)(sinsqrt("t"))"dt")/x^3` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×