Advertisements
Advertisements
Question
Evaluate the following :
`lim_(x -> ∞) [(8x^2 + 5x + 3)/(2x^2 - 7x - 5)]^((4x + 3)/(8x - 1))`
Solution
`lim_(x -> ∞) [(8x^2 + 5x + 3)/(2x^2 - 7x - 5)]^((4x + 3)/(8x - 1))`
= `[lim_(x -> ∞) ((8x^2 + 5x + 3)/(2x^2 - 7x - 5))]^(lim_(x -> ∞)(4x + 3)/(8x - 1))`
Consider
`lim_(x -> ∞) (8x^2 + 5x + 3)/(2x^2 - 7x - 5)`
= `lim_(x -> ∞) [((8x^2 + 5x + 3)/x^2)/((2x^2 - 7x - 5)/x^2)] ...[("Divide Numerator and"),("Denominator by" x^2)]`
= `(lim_(x -> ∞)(8 + 5/x + 3/x^2))/(lim_(x -> ∞)(2 - 7/x - 5/x^2))`
= `(8 + 0 + 0)/(2 - 0 - 0) ...[lim_(x -> ∞) 1/x^"k" = 0, "k" > 0]`
= 4
Consider
`lim_(x -> ∞) (4x + 3)/(8x - 1)`
= `lim_(x -> ∞) ((4x + 3)/x)/((8x - 1)/x)` ...[Divide Numerator and Denominator by x]
= `(lim_(x -> ∞)(4 + 3/x))/(lim_(x -> ∞)(8 - 1/x)`
= `(4 + 0)/(8 - 0) ...[lim_(x -> ∞) 1/x = 0]`
= `1/2`
Required limit = `(4)^(1/2)` = 2
APPEARS IN
RELATED QUESTIONS
Evaluate the following :
`lim_(x -> ∞) [("a"x^3 + "b"x^2 + "c"x + "d")/("e"x^3 + "f"x^2 + "g"x + "h")]`
Evaluate the following :
`lim_(x -> ∞) [(x^3 + 3x + 2)/((x + 4)(x - 6)(x - 3))]`
Evaluate the following :
`lim_(x -> ∞) [(7x^2 + 5x - 3)/(8x^2 - 2x + 7)]`
Evaluate the following :
`lim_(x -> ∞) [(7x^2 + 2x - 3)/(sqrt(x^4 + x + 2))]`
Evaluate the following :
`lim_(x -> ∞) [sqrt(x^2 + 4x + 16) - sqrt(x^2 + 16)]`
Evaluate the following :
`lim_(x -> ∞) [sqrt(x^4 + 4x^2) - x^2]`
Evaluate the following :
`lim_(x -> ∞) [((3x^2 + 4)(4x^2 - 6)(5x^2 + 2))/(4x^6 + 2x^4 - 1)]`
Evaluate the following :
`lim_(x -> ∞) [((3x - 4)^3 (4x + 3)^4)/(3x + 2)^7]`
Evaluate the following :
`lim_(x -> ∞) [sqrt(x)(sqrt(x + 1) - sqrt(x))]`
Evaluate the following :
`lim_(x -> ∞) [((2x - 1)^20 (3x - 1)^30)/(2x + 1)^50]`
Evaluate the following :
`lim_(x -> ∞) [(sqrt(x^2 + 5) - sqrt(x^2 - 3))/(sqrt(x^2 + 3) - sqrt(x^2 + 1))]`
Select the correct answer from the given alternatives.
`lim_(x -> ∞) [((2x + 3)^7 (x - 5)^3)/(2x - 5)^10]` =
Evaluate the following :
`lim_(x -> ∞) [((2x + 1)^2*(7x - 3)^3)/(5x + 2)^5]`