English

Evaluate the following : limx→∞[(3x-4)3(4x+3)4(3x+2)7] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following :

`lim_(x -> ∞) [((3x - 4)^3 (4x + 3)^4)/(3x + 2)^7]`

Sum

Solution

Let L = `lim_(x -> ∞) [((3x - 4)^3 (4x + 3)^4)/(3x + 2)^7]`

Dividing numerator and denominator by x7, we get,

L = `lim_(x -> ∞) ((3x - 4)^3/x^3 xx (4x + 3)^4/x^4)/((3x + 2)^7/x^7)`

= `lim_(x -> ∞) (((3x - 4)/x)^3 xx ((4x + 3)/x)^4)/((3x + 2)/x)^7`

= `lim_(x -> ∞) ((3 - 4/x)^3 xx (4 + 3/x)^4)/(3 + 2/x)^7`

= `([lim_(x -> ∞) (3 - 4 xx 1/x)^3] xx [lim_(x ->∞) (4 + 3 xx 1/x)^4])/(lim_(x ->∞) (3 + 2 xx 1/x)^7`

= `((3 - 4 xx 0)^3 xx (4 + 3 xx 0)^4)/((3 + 2 xx 0)^7)  ...[because lim_(x -> ∞) 1/x = 0]`

= `(3^3 xx 4^4)/(3^7)`

= `256/81`.

shaalaa.com
Limit at Infinity
  Is there an error in this question or solution?
Chapter 7: Limits - Exercise 7.7 [Page 157]
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×