English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Choose the correct alternative: elimx→0xex-sinxx is - Mathematics

Advertisements
Advertisements

Question

Choose the correct alternative:

`lim_(x -> 0) (x"e"^x - sin x)/x` is

Options

  • 1

  • 2

  • 3

  • 0

MCQ

Solution

0

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.6 [Page 130]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.6 | Q 13 | Page 130

RELATED QUESTIONS

Evaluate the following limit:

`lim_(z -> -3) [sqrt("z" + 6)/"z"]`


Evaluate the following limit:

`lim_(z -> -5)[((1/z + 1/5))/(z + 5)]`


Evaluate the following limit :

`lim_(z -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`


Evaluate the following limit :

`lim_(x -> 1) [(x + x^3 + x^5 + ... + x^(2"n" - 1) - "n")/(x - 1)]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> -3) (3x + 2)` = – 7


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> - 3) (sqrt(1 - x) - 2)/(x + 3)`

x – 3.1  – 3.01 – 3.00 – 2.999 – 2.99 – 2.9
f(x) – 0.24845 – 0.24984 – 0.24998 – 0.25001 – 0.25015 – 0.25158

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 3) (4 - x)`


Sketch the graph of f, then identify the values of x0 for which `lim_(x -> x_0)` f(x) exists.

f(x) = `{{:(x^2",", x ≤ 2),(8 - 2x",", 2 < x < 4),(4",", x ≥ 4):}`


Sketch the graph of a function f that satisfies the given value:

f(– 2) = 0

f(2) = 0

`lim_(x -> 2) f(x)` = 0

`lim_(x -> 2) f(x)` does not exist.


Write a brief description of the meaning of the notation `lim_(x -> 8) f(x)` = 25


If the limit of f(x) as x approaches 2 is 4, can you conclude anything about f(2)? Explain reasoning


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + x) - 1)/x`


Find the left and right limits of f(x) = tan x at x = `pi/2`


Show that  `lim_("n" -> oo) (1^2 + 2^2 + ... + (3"n")^2)/((1 + 2 + ... + 5"n")(2"n" + 3)) = 9/25`


Evaluate the following limits:

`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`


Evaluate the following limits:

`lim_(x-> 0) (1 - cos x)/x^2`


Evaluate the following limits:

`lim_(x -> pi) (1 + sinx)^(2"cosec"x)`


Evaluate the following limits:

`lim_(x -> oo) ((x^2 - 2x + 1)/(x^2 -4x + 2))^x`


Choose the correct alternative:

`lim_(x - pi/2) (2x - pi)/cos x`


The value of `lim_(x→0)(sin(ℓn e^x))^2/((e^(tan^2x) - 1))` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×