English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Find the left and right limits of f(x) = tan x at x = π2 - Mathematics

Advertisements
Advertisements

Question

Find the left and right limits of f(x) = tan x at x = `pi/2`

Sum

Solution

To find the left limit of f(x) at x = `pi/2`

Put x = `pi/2 - "h"`

Whee h > 0

When `x -> pi/2`

We have h → 0

`lim_(x -> pi^-/2) (tan x) =  lim_("h" -> 0) tan(pi/2 - "h")`

= `lim_("h" -> 0) cot "h"`

= cot (0)

= `oo`

`lim_(x -> pi^-/2) (tan x) = oo`

To find the right limit of f(x) at x = `pi/2`

Put x = `pi/2 + "h"`

Whee h > 0

When `x -> pi/2`

We have h → 0

`lim_(x -> pi^+/2) (tan x) =  lim_("h" -> 0) tan(pi/2 + "h")`

= `lim_("h" -> 0) (- cot"h")`

= `- lim_("h" -> 0) cot "h"`

`lim_(x -> pi^+/2) (tan x)` = – cot 0

= `- oo`

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.3 [Page 111]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.3 | Q 1. (b) | Page 111

RELATED QUESTIONS

Evaluate the following limit:

If `lim_(x -> 1)[(x^4 - 1)/(x - 1)]` = `lim_(x -> "a")[(x^3 - "a"^3)/(x - "a")]`, find all possible values of a


Evaluate the following limit :

`lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2)(2x + 3)` = 7


Sketch the graph of a function f that satisfies the given value:

f(– 2) = 0

f(2) = 0

`lim_(x -> 2) f(x)` = 0

`lim_(x -> 2) f(x)` does not exist.


If f(2) = 4, can you conclude anything about the limit of f(x) as x approaches 2?


Verify the existence of `lim_(x -> 1) f(x)`, where `f(x) = {{:((|x - 1|)/(x - 1)",",  "for"  x ≠ 1),(0",",  "for"  x = 1):}`


Evaluate the following limits:

`lim_(x ->) (x^"m" - 1)/(x^"n" - 1)`, m and n are integers


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 - x) - 1)/x^2`


Find the left and right limits of f(x) = `(x^2 - 4)/((x^2 + 4x+ 4)(x + 3))` at x = – 2


Evaluate the following limits:

`lim_(x -> oo)(1 + "k"/x)^("m"/x)`


Evaluate the following limits:

`lim_(x -> oo) (1 + 3/x)^(x + 2)`


Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/x`


Evaluate the following limits:

`lim_(x -> oo) x [3^(1/x) + 1 - cos(1/x) - "e"^(1/x)]`


Evaluate the following limits:

`lim_(x - oo){x[log(x + "a") - log(x)]}`


Choose the correct alternative:

`lim_(x -> 0) (x"e"^x - sin x)/x` is


Choose the correct alternative:

`lim_(x -> oo) (1/"n"^2 + 2/"n"^2 + 3/"n"^2 + ... + "n"/"n"^2)` is


Choose the correct alternative:

`lim_(x -> 0) ("e"^tanx - "e"^x)/(tan x - x)` =


The value of `lim_(x→0)(sin(ℓn e^x))^2/((e^(tan^2x) - 1))` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×