English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Evaluate the following limits: limx→0tan2xx - Mathematics

Advertisements
Advertisements

Question

Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/x`

Sum

Solution

We know `lim_(x -> 0) (sinx)/x` = 1

`lim_(x -> 0) (tan 2x)/x =  lim_(x -> 0) (sin 2x)/(cos 2x) xx 1/x`

= `lim_(x -> 0) (sin 2x)/(1/2 xx (2x)) xx 1/(cos 2x)`

= `2(lim_(2x -> 0) (sin 2x)/(2x)) (lim_(x -> 0) 1/(cos 2x))`

= `2 xx 1 xx 1/(cos 0)`

`lim_(x -> 0) (tan 2x)/x = 2 xx 1 xx 1`

= 2

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.4 [Page 118]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.4 | Q 14 | Page 118

RELATED QUESTIONS

Evaluate the following limit:

`lim_(y -> -3) [(y^5 + 243)/(y^3 + 27)]`


Evaluate the following limit :

`lim_(z -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`


Evaluate the following limit :

`lim_(x -> 1) [(x + x^3 + x^5 + ... + x^(2"n" - 1) - "n")/(x - 1)]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> -3) (3x + 2)` = – 7


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2) (x^2 - 1)` = 3


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (sqrt(x + 3) - sqrt(3))/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.2911 0.2891 0.2886 0.2886 0.2885 0.28631

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 3) 1/(x - 3)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 0) sec x`


Evaluate the following limits:

`lim_(x -> 2) (x^4 - 16)/(x - 2)`


Show that `lim_("n" -> oo) (1 + 2 + 3 + ... + "n")/(3"n"^2 + 7n" + 2) = 1/6`


Evaluate the following limits:

`lim_(x -> 0) (sinalphax)/(sinbetax)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + sinx) - sqrt(1 - sinx))/tanx`


Choose the correct alternative:

`lim_(x -> 0) sqrt(1 - cos 2x)/x`


Choose the correct alternative:

`lim_(x -> 0) (x"e"^x - sin x)/x` is


Choose the correct alternative:

`lim_(x -> 0) ("e"^(sin x) - 1)/x` =


`lim_(x -> 0) ((2 + x)^5 - 2)/((2 + x)^3 - 2)` = ______.


`lim_(x -> 0) (sin 4x + sin 2x)/(sin5x - sin3x)` = ______.


`lim_(x→0^+)(int_0^(x^2)(sinsqrt("t"))"dt")/x^3` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×