English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Evaluate the following limits: limx→01+sinx-1-sinxtanx - Mathematics

Advertisements
Advertisements

Question

Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + sinx) - sqrt(1 - sinx))/tanx`

Sum

Solution

`lim_(x -> 0) (sqrt(1 + sinx) - sqrt(1 - sinx))/tanx =  lim_(x -> 0) ((sqrt(1 + sinx)  sqrt(1 - sinx))(sqrt(1 + sinx) + sqrt(1 -  sinx)))/(tanx(sqrt(1 - sinx) + sqrt(1 - sinx))`

= `lim_(x -> 0) ((1 + sinx) - (1 -sinx))/(sinx/cosx (sqrt(1 +  sinx) + sqrt(1 -  sin))`

= `lim_(x -> 0) (cosx[1 + sinx - 1 + sinx])/(sinx(sqrt(1 + sinx) + sqrt(1 - sinx))`

= `lim_(x -> 0) (cosx xx 2sinx)/(sinx(sqrt(1 + sinx) + sqrt(1 - sinx))`

= `2 lim_(x -> 0) cosx/((sqrt(1 + sinx) + sqrt(1 -  sinx))`

= `2 x (cos 0)/((sqrt(1 +  sin0) + sqrt(1 - sin))`

= `(2 xx 1)/((sqrt(1 + 0) + sqrt(1 - 0))`

= `2/(1 +1)`

= `2/2`

`lim_(x -> 0) (sqrt(1 + sinx) - sqrt(1 - sinx))/tanx` = 1

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.4 [Page 118]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.4 | Q 23 | Page 118

RELATED QUESTIONS

Evaluate the following limit:

`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limit : 

If `lim_(x -> 5) [(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2)(2x + 3)` = 7


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (cos x - 1)/x`

x – 0.1  – 0.01 – 0.001 0.0001 0.01 0.1
f(x) 0.04995 0.0049999 0.0004999 – 0.0004999 – 0.004999 – 0.04995

Sketch the graph of f, then identify the values of x0 for which `lim_(x -> x_0)` f(x) exists.

f(x) = `{{:(x^2",", x ≤ 2),(8 - 2x",", 2 < x < 4),(4",", x ≥ 4):}`


Write a brief description of the meaning of the notation `lim_(x -> 8) f(x)` = 25


If the limit of f(x) as x approaches 2 is 4, can you conclude anything about f(2)? Explain reasoning


Evaluate the following limits:

`lim_(x -> 5) (sqrt(x + 4) - 3)/(x - 5)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(x^2 + 1) - 1)/(sqrt(x^2 + 16) - 4)`


Evaluate the following limits:

`lim_(x -> oo) (1 + x - 3x^3)/(1 + x^2 +3x^3)`


Show that `lim_("n" -> oo) (1 + 2 + 3 + ... + "n")/(3"n"^2 + 7n" + 2) = 1/6`


Evaluate the following limits:

`lim_(x -> 0) (sin^3(x/2))/x^2`


Evaluate the following limits:

`lim_(x-> 0) (1 - cos x)/x^2`


Evaluate the following limits:

`lim_(x -> 0) (1 - cos^2x)/(x sin2x)`


Evaluate the following limits:

`lim_(x -> oo) x [3^(1/x) + 1 - cos(1/x) - "e"^(1/x)]`


Evaluate the following limits:

`lim_(x -> 0) ("e"^("a"x) - "e"^("b"x))/x`


Choose the correct alternative:

`lim_(x -> oo) sinx/x`


Choose the correct alternative:

If `lim_(x -> 0) (sin "p"x)/(tan 3x)` = 4, then the value of p is


`lim_(x→∞)((x + 7)/(x + 2))^(x + 4)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×