English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Evaluate the following limits: limx→5x+4-3x-5 - Mathematics

Advertisements
Advertisements

Question

Evaluate the following limits:

`lim_(x -> 5) (sqrt(x + 4) - 3)/(x - 5)`

Sum

Solution

`lim_(x -> 5) (sqrt(x + 4) - 3)/(x - 5)`

Pu y = x + 4

⇒ x = y – 4

⇒ x – 5 = y – 4 – 5

⇒ x – 5 = y – 9

⇒ y → 5 + 4 = 9

∴ `lim_(x -> 5) (sqrt(x + 4) - 3)/(x - 5) =  lim_(y -> 9) (sqrt(y) - sqrt(3^2))/(y - 9)`

= `lim_(y -> 9) (y^(1/2) - (9)^(1/2))/(y - 9)`

`lim_(x -> "a") (x^"n" - "a"^"n") = "na"^("n" - 1)`

`lim_(x -> 5) (sqrt(x + 4) - 3)/(x - 5) = 1/2(9)^(1/2 - 1)`

= `1/2 (9)^(-1/2)`

= `1/2 xx 1/(9^(1/2)`

= `1/2 xx 1/sqrt(9)`

= `1/2 xx 1/3`

= `1/6`

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.2 [Page 102]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.2 | Q 5 | Page 102

RELATED QUESTIONS

Evaluate the following limit:

`lim_(y -> -3) [(y^5 + 243)/(y^3 + 27)]`


Evaluate the following limit:

`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limit : 

If `lim_(x -> 5) [(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 1) (x^2 + x + 1)` = 3


Evaluate the following :

`lim_(x -> 0) [(sqrt(1 - cosx))/x]`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 3) 1/(x - 3)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 0) sec x`


Evaluate : `lim_(x -> 3) (x^2 - 9)/(x - 3)` if it exists by finding `f(3^-)` and `f(3^+)`


Evaluate the following limits:

`lim_(x -> "a") (sqrt(x - "b") - sqrt("a" - "b"))/(x^2 - "a"^2) ("a" > "b")`


Evaluate the following limits:

`lim_(x -> 0)(1 + x)^(1/(3x))`


Evaluate the following limits:

`lim_(x -> oo)(1 + "k"/x)^("m"/x)`


Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/x`


Evaluate the following limits:

`lim_(x -> pi) (1 + sinx)^(2"cosec"x)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(2) - sqrt(1 + cosx))/(sin^2x)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + sinx) - sqrt(1 - sinx))/tanx`


`lim_(x -> 0) (sin 4x + sin 2x)/(sin5x - sin3x)` = ______.


`lim_(x→0^+)(int_0^(x^2)(sinsqrt("t"))"dt")/x^3` is equal to ______.


The value of `lim_(x rightarrow 0) (sqrt((1 + x^2)) - sqrt(1 - x^2))/x^2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×