English

Evaluate the following limit: limx→5[x3-125x5-3125] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`

Evaluate

Solution

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`

= `lim_(x -> 5)(((x^3 - 5^3)/(x - 5)))/(((x^5 - 5^5)/(x - 5)))     ...[(because x -> 5"," therefore x ≠ 5","),(therefore x - 5 ≠0)]`

= `(lim_(x -> 5) (x^3 - 5^3)/(x - 5))/(lim_(x -> 5)(x^5 - 5^5)/(x - 5))`

= `(3(5)^2)/(5(5)^4)    ...[because  lim_(x -> "a") (x^"n" - "a"^"n")/(x - "a") = "n"*"a"^("n" - 1)]`

= `3/(5)^3`

= `3/125`

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 7: Limits - Exercise 7.1 [Page 139]

RELATED QUESTIONS

Evaluate the following limit:

`lim_(y -> -3) [(y^5 + 243)/(y^3 + 27)]`


Evaluate the following limit:

`lim_(x -> 3)[sqrt(2x + 6)/x]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2)(2x + 3)` = 7


Evaluate the following :

`lim_(x -> 1) [(x + 3x^2 + 5x^3 + ... + (2"n" - 1)x^"n" - "n"^2)/(x - 1)]`


Evaluate the following :

`lim_(x -> 0) {1/x^12 [1 - cos(x^2/2) - cos(x^4/4) + cos(x^2/2) cos(x^4/4)]}`


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) sin x/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.99833 0.99998 0.99999 0.99999 0.99998 0.99833

Sketch the graph of f, then identify the values of x0 for which `lim_(x -> x_0)` f(x) exists.

f(x) = `{{:(sin x",", x < 0),(1 - cos x",", 0 ≤ x ≤ pi),(cos x",", x > pi):}`


Evaluate : `lim_(x -> 3) (x^2 - 9)/(x - 3)` if it exists by finding `f(3^-)` and `f(3^+)`


Verify the existence of `lim_(x -> 1) f(x)`, where `f(x) = {{:((|x - 1|)/(x - 1)",",  "for"  x ≠ 1),(0",",  "for"  x = 1):}`


Evaluate the following limits:

`lim_("h" -> 0) (sqrt(x + "h") - sqrt(x))/"h", x > 0`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(x^2 + 1) - 1)/(sqrt(x^2 + 16) - 4)`


Evaluate the following limits:

`lim_(x -> 2) (2 - sqrt(x + 2))/(root(3)(2) - root(3)(4 - x))`


Find the left and right limits of f(x) = `(x^2 - 4)/((x^2 + 4x+ 4)(x + 3))` at x = – 2


Evaluate the following limits:

`lim_(x -> oo) (x^3 + x)/(x^4 - 3x^2 + 1)`


Evaluate the following limits:

`lim_(x -> oo) (x^4 - 5x)/(x^2 - 3x + 1)`


Show that `lim_("n" -> oo) (1 + 2 + 3 + ... + "n")/(3"n"^2 + 7n" + 2) = 1/6`


Show that  `lim_("n" -> oo) (1^2 + 2^2 + ... + (3"n")^2)/((1 + 2 + ... + 5"n")(2"n" + 3)) = 9/25`


Evaluate the following limits:

`lim_(x -> oo) (1 + 3/x)^(x + 2)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(x^2 + "a"^2) - "a")/(sqrt(x^2 + "b"^2) - "b")`


Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/x`


Evaluate the following limits:

`lim_(x -> 0) (2^x - 3^x)/x`


Evaluate the following limits:

`lim_(x -> 0) (1 - cos^2x)/(x sin2x)`


Evaluate the following limits:

`lim_(x -> pi) (sin3x)/(sin2x)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + sinx) - sqrt(1 - sinx))/tanx`


Evaluate the following limits:

`lim_(x -> 0) ("e"^x - "e"^(-x))/sinx`


Choose the correct alternative:

`lim_(x -> 0) ("a"^x - "b"^x)/x` =


Choose the correct alternative:

`lim_(x -> 3) [x]` =


If `lim_(x->1)(x^5-1)/(x-1)=lim_(x->k)(x^4-k^4)/(x^3-k^3),` then k = ______.


`lim_(x -> 0) ((2 + x)^5 - 2)/((2 + x)^3 - 2)` = ______.


`lim_(x -> 5) |x - 5|/(x - 5)` = ______.


`lim_(x→∞)((x + 7)/(x + 2))^(x + 4)` is ______.


The value of `lim_(x→0)(sin(ℓn e^x))^2/((e^(tan^2x) - 1))` is ______.


The value of `lim_(x rightarrow 0) (sqrt((1 + x^2)) - sqrt(1 - x^2))/x^2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×