मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Evaluate the following limit: limx→5[x3-125x5-3125] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`

मूल्यांकन

उत्तर

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`

= `lim_(x -> 5)(((x^3 - 5^3)/(x - 5)))/(((x^5 - 5^5)/(x - 5)))     ...[(because x -> 5"," therefore x ≠ 5","),(therefore x - 5 ≠0)]`

= `(lim_(x -> 5) (x^3 - 5^3)/(x - 5))/(lim_(x -> 5)(x^5 - 5^5)/(x - 5))`

= `(3(5)^2)/(5(5)^4)    ...[because  lim_(x -> "a") (x^"n" - "a"^"n")/(x - "a") = "n"*"a"^("n" - 1)]`

= `3/(5)^3`

= `3/125`

shaalaa.com
Concept of Limits
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - Exercise 7.1 [पृष्ठ १३९]

APPEARS IN

संबंधित प्रश्‍न

Evaluate the following limit:

`lim_(z -> -5)[((1/z + 1/5))/(z + 5)]`


Evaluate the following limit : 

If `lim_(x -> 5) [(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


Evaluate the following limit :

`lim_(x -> 1) [(x + x^3 + x^5 + ... + x^(2"n" - 1) - "n")/(x - 1)]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2)(2x + 3)` = 7


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2) (x^2 - 1)` = 3


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 1) (x^2 + x + 1)` = 3


In problems 1 – 6, using the table estimate the value of the limit.

`lim_(x -> 2) (x - 2)/(x^2 - x - 2)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.344820 0.33444 0.33344 0.333222 0.33222 0.332258

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 2) (x - 2)/(x^2 - 4)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.25641 0.25062 0.250062 0.24993 0.24937 0.24390

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (cos x - 1)/x`

x – 0.1  – 0.01 – 0.001 0.0001 0.01 0.1
f(x) 0.04995 0.0049999 0.0004999 – 0.0004999 – 0.004999 – 0.04995

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) (x^2 + 2)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) f(x)` where `f(x) = {{:(x^2 + 2",", x ≠ 1),(1",", x = 1):}`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 5) |x - 5|/(x - 5)`


Evaluate the following limits:

`lim_(x -> 2) (x^4 - 16)/(x - 2)`


Evaluate the following limits:

`lim_(x -> 2) (1/x - 1/2)/(x - 2)`


Evaluate the following limits:

`lim_(x -> 5) (sqrt(x - 1) - 2)/(x - 5)`


Find the left and right limits of f(x) = `(x^2 - 4)/((x^2 + 4x+ 4)(x + 3))` at x = – 2


Find the left and right limits of f(x) = tan x at x = `pi/2`


Evaluate the following limits:

`lim_(x -> oo) (x^3 + x)/(x^4 - 3x^2 + 1)`


Evaluate the following limits:

`lim_(x -> oo) (1 + x - 3x^3)/(1 + x^2 +3x^3)`


Show that `lim_("n" -> oo) 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/("n"("n" + 1))` = 1


Evaluate the following limits:

`lim_(x -> oo)(1 + "k"/x)^("m"/x)`


Evaluate the following limits:

`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m"`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(x^2 + "a"^2) - "a")/(sqrt(x^2 + "b"^2) - "b")`


Evaluate the following limits:

`lim_(x -> 0) (3^x - 1)/(sqrt(x + 1) - 1)`


Evaluate the following limits:

`lim_(x - oo){x[log(x + "a") - log(x)]}`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(2) - sqrt(1 + cosx))/(sin^2x)`


Choose the correct alternative:

`lim_(x - pi/2) (2x - pi)/cos x`


Choose the correct alternative:

`lim_(theta -> 0) (sinsqrt(theta))/(sqrt(sin theta)`


Choose the correct alternative:

`lim_(x -> oo) ((x^2 + 5x + 3)/(x^2 + x + 3))^x` is


Choose the correct alternative:

If `lim_(x -> 0) (sin "p"x)/(tan 3x)` = 4, then the value of p is


Choose the correct alternative:

`lim_(x -> 0) ("e"^(sin x) - 1)/x` =


`lim_(x -> 0) (sin 4x + sin 2x)/(sin5x - sin3x)` = ______.


`lim_(x→0^+)(int_0^(x^2)(sinsqrt("t"))"dt")/x^3` is equal to ______.


If `lim_(x -> 1) (x + x^2 + x^3|+ .... + x^n - n)/(x - 1)` = 820, (n ∈ N) then the value of n is equal to ______.


`lim_(x→-1) (x^3 - 2x - 1)/(x^5 - 2x - 1)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×