मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

In problems 1 – 6, using the table estimate the value of the limitlimx→2x-2x2-4 - Mathematics

Advertisements
Advertisements

प्रश्न

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 2) (x - 2)/(x^2 - 4)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.25641 0.25062 0.250062 0.24993 0.24937 0.24390
तक्ता

उत्तर

`lim_(x -> 2) (x - 2)/(x^2 - 4) =  lim_(x -> 2) (x - 2)/((x + 2)(x - 2))`

= `lim_(x -> 2) 1/((x + 2))`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x)

`1/(1.9 + 2)`

= `1/3.9`

= 0.256

`1/(1.99 + 2)`

= `1/3.99`

= 0.251

`1/(1.999 + 2)`

= `1/3.999`

= 0.250

`1/(2.001 + 2)`

= `1/4.001`

= 0.249

`1/(2.01 + 2)`

= `1/4.01`

= 0.249

`1/(2.1 + 2)`

= `1/4.1`

= 0.244

`lim_(x -> 2) (x - 2)/(x^2 - 4) =  lim_(x -> 2) 11/(x + 2)`

= `1/(2 + 2)`

= `1/4`

= 0.25

shaalaa.com
Concept of Limits
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Calculus - Limits and Continuity - Exercise 9.1 [पृष्ठ ९५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 9 Differential Calculus - Limits and Continuity
Exercise 9.1 | Q 2 | पृष्ठ ९५

संबंधित प्रश्‍न

Evaluate the following limit : 

If `lim_(x -> 5) [(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


Evaluate the following :

`lim_(x -> 0)[x/(|x| + x^2)]`


In problems 1 – 6, using the table estimate the value of the limit.

`lim_(x -> 2) (x - 2)/(x^2 - x - 2)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.344820 0.33444 0.33344 0.333222 0.33222 0.332258

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> - 3) (sqrt(1 - x) - 2)/(x + 3)`

x – 3.1  – 3.01 – 3.00 – 2.999 – 2.99 – 2.9
f(x) – 0.24845 – 0.24984 – 0.24998 – 0.25001 – 0.25015 – 0.25158

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) f(x)` where `f(x) = {{:(x^2 + 2",", x ≠ 1),(1",", x = 1):}`


If the limit of f(x) as x approaches 2 is 4, can you conclude anything about f(2)? Explain reasoning


Evaluate the following limits:

`lim_(sqrt(x) -> 3) (x^2 - 81)/(sqrt(x) - 3)`


Evaluate the following limits:

`lim_(x -> 5) (sqrt(x + 4) - 3)/(x - 5)`


Evaluate the following limits:

`lim_(x -> 2) (2 - sqrt(x + 2))/(root(3)(2) - root(3)(4 - x))`


Evaluate the following limits:

`lim_(x - 0) (sqrt(1 + x^2) - 1)/x`


Evaluate the following limits:

`lim_(x -> oo) (x^3 + x)/(x^4 - 3x^2 + 1)`


Evaluate the following limits:

`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m"`


Evaluate the following limits:

`lim_(x-> 0) (1 - cos x)/x^2`


Evaluate the following limits:

`lim_(x -> 0) ("e"^("a"x) - "e"^("b"x))/x`


Choose the correct alternative:

`lim_(x - oo) sqrt(x^2 - 1)/(2x + 1)` =


Choose the correct alternative:

`lim_(x -> 0) (x"e"^x - sin x)/x` is


`lim_(x→∞)((x + 7)/(x + 2))^(x + 4)` is ______.


The value of `lim_(x→0)(sin(ℓn e^x))^2/((e^(tan^2x) - 1))` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×