मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

In problems 1 – 6, using the table estimate the value of the limit. limx→2x-2x2-x-2 x 1.9 1.99 1.999 2.001 2.01 2.1 f(x) 0.344820 0.33444 0.33344 0.333222 0.33222 0.332258 - Mathematics

Advertisements
Advertisements

प्रश्न

In problems 1 – 6, using the table estimate the value of the limit.

`lim_(x -> 2) (x - 2)/(x^2 - x - 2)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.344820 0.33444 0.33344 0.333222 0.33222 0.332258
तक्ता

उत्तर

`lim_(x -> 2) (x - 2)/(x^2 - x - 2) =  lim_(x -> 2) ( x - 2)/((x - 2)(x + 1))`

= `lim_(x -> 2) (x - 2)/(x + 1)`

1.9 1.99 1.999 2.001 20.1 2.1
f(x)

`1/(1.9 + 1)`

= `1/2.9`

= 0.34

`1/(1.99 + 1)`

= `1/2.99`

= 0.33

`1/(1.999 + 1)`

= `1/2.99`

= 0.33

`1/(2.001 + 1)`

= `1/3.001`

= 0.33

`1/(2.01 + 1)`

= `1/3.01`

= 0.33

`1/(2.1 + 1)`

= `1/3.1`

= 0.32

`lim_(x -> 2) (x - 2)/(x^2 - x - 2)` = 0.3

shaalaa.com
Concept of Limits
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Calculus - Limits and Continuity - Exercise 9.1 [पृष्ठ ९५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 9 Differential Calculus - Limits and Continuity
Exercise 9.1 | Q 1 | पृष्ठ ९५

संबंधित प्रश्‍न

Evaluate the following limit:

`lim_(y -> -3) [(y^5 + 243)/(y^3 + 27)]`


Evaluate the following limit :

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Evaluate the following limit :

`lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`


Evaluate the following limit :

`lim_(y -> 1)[(2y - 2)/(root(3)(7 + y) - 2)]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2)(2x + 3)` = 7


Evaluate the following :

`lim_(x -> 1) [(x + 3x^2 + 5x^3 + ... + (2"n" - 1)x^"n" - "n"^2)/(x - 1)]`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 3) (4 - x)`


If the limit of f(x) as x approaches 2 is 4, can you conclude anything about f(2)? Explain reasoning


Verify the existence of `lim_(x -> 1) f(x)`, where `f(x) = {{:((|x - 1|)/(x - 1)",",  "for"  x ≠ 1),(0",",  "for"  x = 1):}`


Evaluate the following limits:

`lim_(x -> 2) (1/x - 1/2)/(x - 2)`


Evaluate the following limits:

`lim_(x -> oo) (1 + x - 3x^3)/(1 + x^2 +3x^3)`


Show that `lim_("n" -> oo) 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/("n"("n" + 1))` = 1


Evaluate the following limits:

`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m"`


Evaluate the following limits:

`lim_(x -> pi) (1 + sinx)^(2"cosec"x)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + sinx) - sqrt(1 - sinx))/tanx`


Evaluate the following limits:

`lim_(x -> 0) ("e"^("a"x) - "e"^("b"x))/x`


Choose the correct alternative:

`lim_(x -> 0) ("e"^tanx - "e"^x)/(tan x - x)` =


`lim_(x -> 0) ((2 + x)^5 - 2)/((2 + x)^3 - 2)` = ______.


If `lim_(x -> 1) (x + x^2 + x^3|+ .... + x^n - n)/(x - 1)` = 820, (n ∈ N) then the value of n is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×