मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Verify the existence of limx→1f(x), where ,for,forf(x)={|x-1|x-1, for x≠10, for x=1 - Mathematics

Advertisements
Advertisements

प्रश्न

Verify the existence of `lim_(x -> 1) f(x)`, where `f(x) = {{:((|x - 1|)/(x - 1)",",  "for"  x ≠ 1),(0",",  "for"  x = 1):}`

बेरीज

उत्तर

Given `f(x) = {{:((|x - 1|)/(x - 1)",",  "for"  x ≠ 1),(0",",  "for"  x = 1):}`

`f(x) = {{:(|(x - 1|)/(x - 1),  "for"  x < 1 and x > 1),(0,  "for"  x = 1):}`

`f(x) = {{:((- (x - 1))/(x - 1),  "for"  x < 1),((x - 1)/(x - 1),  "for"  x > 1),(0,  "for"  x = 1):}`

`f(x) = {{:(-1,  "for"  x < 1),(1,  "for"  x > 1),(0,  "for"  x = 1):}`

`f(1^-) = lim_(x -> 1^-) f(x)`

= `lim_(x -> 1^-) (- 1)` = – 1   .......(1)

`f(1^+) = lim_(x -> 1^+) f(x)`

= `lim_(x -> 1^+) (1)` = 1   .......(2)

From equations (1) and (2) we get

f(1) ≠ f(1+)

∴ The limit of f(x) does not exist.

shaalaa.com
Concept of Limits
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Calculus - Limits and Continuity - Exercise 9.1 [पृष्ठ ९८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 9 Differential Calculus - Limits and Continuity
Exercise 9.1 | Q 23 | पृष्ठ ९८

संबंधित प्रश्‍न

In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2) (x^2 - 1)` = 3


Evaluate the following :

`lim_(x -> 0)[x/(|x| + x^2)]`


Evaluate the following :

`lim_(x -> 0) [(sqrt(1 - cosx))/x]`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 2) f(x)` where `f(x) = {{:(4 - x",", x ≠ 2),(0",", x = 2):}`


Evaluate the following limits:

`lim_(x -> 2) (x^4 - 16)/(x - 2)`


Evaluate the following limits:

`lim_(x ->) (x^"m" - 1)/(x^"n" - 1)`, m and n are integers


Evaluate the following limits:

`lim_(x -> 1) (sqrt(x) - x^2)/(1 - sqrt(x))`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + x) - 1)/x`


Evaluate the following limits:

`lim_(x - 0) (sqrt(1 + x^2) - 1)/x`


Evaluate the following limits:

`lim_(x -> oo)(1 + 1/x)^(7x)`


Evaluate the following limits:

`lim_(x -> oo)(1 + "k"/x)^("m"/x)`


Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/x`


Evaluate the following limits:

`lim_(x -> 0) (1 - cos^2x)/(x sin2x)`


Evaluate the following limits:

`lim_(x - oo){x[log(x + "a") - log(x)]}`


Choose the correct alternative:

`lim_(x - pi/2) (2x - pi)/cos x`


Choose the correct alternative:

`lim_(x - oo) sqrt(x^2 - 1)/(2x + 1)` =


Choose the correct alternative:

`lim_(x -> 0) (8^x - 4x - 2^x + 1^x)/x^2` =


Choose the correct alternative:

`lim_(x -> 0) (x"e"^x - sin x)/x` is


Choose the correct alternative:

The value of `lim_(x -> 0) sinx/sqrt(x^2)` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×