मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Evaluate the following : limx→0[1-cosxx] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following :

`lim_(x -> 0) [(sqrt(1 - cosx))/x]`

बेरीज

उत्तर

Let f(x) = `(sqrt(1 - cosx))/x`

= `(sqrt(1 - cosx))/x xx (sqrt(1 + cosx))/(sqrt(1 + cos x))`

= `(sqrt(1 - cos^2x))/(xsqrt(1 + cosx))`

= `(sqrt(sin^2x))/(xsqrt(1 + cos x))`

= `|sinx|/(xsqrt(1 + cos x)`

Now, |sin x| = `{(sinx, "if"  x > 0),(-sinx, "if"  x < 0):}`

∴ `lim_(x -> 0^+) "f"(x) =  lim_(x -> 0^+) (sqrt(1 - cosx))/x`

= `lim_(x -> 0) sinx/(xsqrt(1 + cosx))`

= `(lim_(x -> 0) (sinx/x))/(lim_(x -> 0) sqrt(1 + cos x))`

= `1/(sqrt(1 + cos 0))`

= `1/sqrt(2)`    ...(1)

∴ `lim_(x -> 0^-) "f"(x) =  lim_(x -> 0^-) (sqrt(1 - cosx))/x`

= `lim_(x -> 0) (- sinx)/(xsqrt(1 + cosx))`

= `-lim_(x -> 0) sinx/(xsqrt(1 + cos x)`

=`-lim_(x-> 0) ((sinx/x))/sqrt(1 + cos x)`

= `- (lim_(x -> 0) (sinx/x))/(lim_(x -> 0) (sqrt(1 + cos x))`

= `- 1/sqrt(1 + 1)`

= `-1/sqrt(2)`     ...(2)

From (1) and (2),

`lim_(x -> 0^+) "f"(x) ≠ lim_(x -> 0^-) "f"(x)`

∴ `lim_(x -> 0) "f"(x)  "i.e.", lim_(x -> 0) (sqrt(1 - cos x))/x` does not exist.

shaalaa.com
Concept of Limits
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - Miscellaneous Exercise 7.2 [पृष्ठ १५९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 7 Limits
Miscellaneous Exercise 7.2 | Q II. (21) | पृष्ठ १५९

संबंधित प्रश्‍न

Evaluate the following limit : 

If `lim_(x -> 5) [(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


Evaluate the following limit :

`lim_(z -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`


Evaluate the following limit :

`lim_(x -> 1) [(x + x^3 + x^5 + ... + x^(2"n" - 1) - "n")/(x - 1)]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2)(2x + 3)` = 7


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2) (x^2 - 1)` = 3


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 1) (x^2 + x + 1)` = 3


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (sqrt(x + 3) - sqrt(3))/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.2911 0.2891 0.2886 0.2886 0.2885 0.28631

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 3) (4 - x)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 0) sec x`


Sketch the graph of f, then identify the values of x0 for which `lim_(x -> x_0)` f(x) exists.

f(x) = `{{:(x^2",", x ≤ 2),(8 - 2x",", 2 < x < 4),(4",", x ≥ 4):}`


Sketch the graph of a function f that satisfies the given value:

f(0) is undefined

`lim_(x -> 0) f(x)` = 4

f(2) = 6

`lim_(x -> 2) f(x)` = 3


Sketch the graph of a function f that satisfies the given value:

f(– 2) = 0

f(2) = 0

`lim_(x -> 2) f(x)` = 0

`lim_(x -> 2) f(x)` does not exist.


Verify the existence of `lim_(x -> 1) f(x)`, where `f(x) = {{:((|x - 1|)/(x - 1)",",  "for"  x ≠ 1),(0",",  "for"  x = 1):}`


Evaluate the following limits:

`lim_("h" -> 0) (sqrt(x + "h") - sqrt(x))/"h", x > 0`


Evaluate the following limits:

`lim_(x -> 1) (sqrt(x) - x^2)/(1 - sqrt(x))`


Evaluate the following limits:

`lim_(x -> "a") (sqrt(x - "b") - sqrt("a" - "b"))/(x^2 - "a"^2) ("a" > "b")`


Evaluate the following limits:

`lim_(x -> oo) (1 + x - 3x^3)/(1 + x^2 +3x^3)`


Show that `lim_("n" -> oo) (1 + 2 + 3 + ... + "n")/(3"n"^2 + 7n" + 2) = 1/6`


Show that  `lim_("n" -> oo) (1^2 + 2^2 + ... + (3"n")^2)/((1 + 2 + ... + 5"n")(2"n" + 3)) = 9/25`


Evaluate the following limits:

`lim_(x -> 0)(1 + x)^(1/(3x))`


Evaluate the following limits:

`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`


Evaluate the following limits:

`lim_(x -> 0) (sin^3(x/2))/x^2`


Evaluate the following limits:

`lim_(x -> 0) (sinalphax)/(sinbetax)`


Evaluate the following limits:

`lim_(x -> 0) (sin("a" + x) - sin("a" - x))/x`


Evaluate the following limits:

`lim_(x -> 0) (2^x - 3^x)/x`


Evaluate the following limits:

`lim_(x -> 0) (3^x - 1)/(sqrt(x + 1) - 1)`


Evaluate the following limits:

`lim_(x -> ) (sinx(1 - cosx))/x^3`


Evaluate the following limits:

`lim_(x -> 0) (tan x - sin x)/x^3`


Choose the correct alternative:

`lim_(x -> oo) sinx/x`


Choose the correct alternative:

`lim_(x -> oo) ((x^2 + 5x + 3)/(x^2 + x + 3))^x` is


Choose the correct alternative:

`lim_(x -> oo) (1/"n"^2 + 2/"n"^2 + 3/"n"^2 + ... + "n"/"n"^2)` is


Choose the correct alternative:

The value of `lim_(x -> 0) sinx/sqrt(x^2)` is


`lim_(x -> 5) |x - 5|/(x - 5)` = ______.


`lim_(x -> 0) (sin 4x + sin 2x)/(sin5x - sin3x)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×