मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Evaluate the following limits: limx→0tanx-sinxx3 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits:

`lim_(x -> 0) (tan x - sin x)/x^3`

बेरीज

उत्तर

We know `lim_(x -> 0) sinx/x` = 1

`lim_(x -> 0) (tan x - sin x)/x^3 =  lim_(x -> 0) (sinx/cosx - sin x)/x^3`

= `lim_(x -> 0) ((sinx - sinx cosx)/cosx)/x^3`

= `lim_(x -> 0) (sinx(1 -  cosx))/(x^3 cosx)`

= `lim_(x -> 0) sinx/x * (2sin^2 (x/2))/(x^2) xx 1/cosx`

= `lim_(x -> 0) sinx/x xx (2sin^2 (x/2))/(2^2 xx x^2/2^2) xx 1/cosx`

= `lim_(x -> 0) sinx/x xx 1/2 (lim_(x/2 -> 0) (sin(x/2))/(x/2))^2 xx lim_(x - 0) 1/cosx`

= `1 xx 1/2 xx 1^2 xx 1/cos0`

= `1/2 xx 1/1`

`lim_(x -> 0) (tan x - sin x)/x^3 = 1/2`

shaalaa.com
Concept of Limits
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Calculus - Limits and Continuity - Exercise 9.4 [पृष्ठ ११८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 9 Differential Calculus - Limits and Continuity
Exercise 9.4 | Q 28 | पृष्ठ ११८

संबंधित प्रश्‍न

Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limit : 

If `lim_(x -> 5) [(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> -3) (3x + 2)` = – 7


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 3) (4 - x)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 0) sec x`


Evaluate the following limits:

`lim_(sqrt(x) -> 3) (x^2 - 81)/(sqrt(x) - 3)`


Evaluate the following limits:

`lim_("h" -> 0) (sqrt(x + "h") - sqrt(x))/"h", x > 0`


Evaluate the following limits:

`lim_(x -> 2) (1/x - 1/2)/(x - 2)`


Evaluate the following limits:

`lim_(x -> 1) (root(3)(7 + x^3) - sqrt(3 + x^2))/(x - 1)`


Evaluate the following limits:

`lim_(x -> "a") (sqrt(x - "b") - sqrt("a" - "b"))/(x^2 - "a"^2) ("a" > "b")`


Evaluate the following limits:

`lim_(x -> oo) (1 + 3/x)^(x + 2)`


Evaluate the following limits:

`lim_(x -> 0) (3^x - 1)/(sqrt(x + 1) - 1)`


Evaluate the following limits:

`lim_(x -> ) (sinx(1 - cosx))/x^3`


Choose the correct alternative:

`lim_(x -> 0) (8^x - 4x - 2^x + 1^x)/x^2` =


Choose the correct alternative:

If `lim_(x -> 0) (sin "p"x)/(tan 3x)` = 4, then the value of p is


Choose the correct alternative:

`lim_(x -> 0) ("e"^(sin x) - 1)/x` =


Choose the correct alternative:

The value of `lim_(x -> 0) sinx/sqrt(x^2)` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×