Advertisements
Advertisements
प्रश्न
Evaluate the following limits:
`lim_(x -> 1) (root(3)(7 + x^3) - sqrt(3 + x^2))/(x - 1)`
उत्तर
`lim_(x -> 1) (root(3)(7 + x^3) - sqrt(3 + x^2))/(x - 1) = lim_(x -> 1) (root(3)(7 + x^2) - 2 + 2 sqrt(3 + x^2))/(x - 1)`
= `lim_(x -> 1) ((7 + x^3)^(1/3) - 2)/(x - 1) - lim_(x -> 1) ((3 + x^2)^(1/2) - 2)/(x - 1)`
= `lim_(x -> 1) ((7 + x^3)^(1/3) - (8)^(1/3))/(x^3 - 1) xx (x^3 - 1)/(x - 1) - lim_(x -> 1) ((3 + x^2)^(1/2) - (4)^(1/2))/(x^2 - 1) xx (x^2 - 1)/(x - 1)`
= `lim_(x -> 1) ((7 + x^3)^(1/3) - (8)^(1/2))/((7 + x^3) - 8) xx ((x - 1)(x^2 + x + 1))/(x - 1) - lim_(x -> 0) ((3 + x^2)^(1/2) - (4)^(1/2))/((3 + x^2) - 4) xx ((x + 1)(x - 1))/(x - 1)`
= `lim_(x -> 1) ((7 + x^3)^(1/3) - (8)^(1/2))/((7 + x^3) - 8) xx (x^2 + x + 1) - lim_(x _> 1) ((3 + x^2)^(4)^(1/2))/((3 + x^2) - 4) xx (x + 1)`
`lim_(x -> "a") (x^"n" - "a"^"n") = "na"^("n" - 1)`
= `1/3(8)^(1/3 - 1) (1^2 + 1 + 1) - 1/2(4)^(1/2 - 1) (1 + 1)`
= `1/3(8)^(-2/3) (3) - 1/2 xx (4)^(-1/2) xx (2)`
= `(2^3)^(-2/3) - (2^2)^(- 1/2)`
= `2^(-2) - 2^(-1)`
= `1/2^2 - 1/2`
= `1/4 - 1/2`
= `(1 - 2)/4`
= `- 1/4`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit:
`lim_(z -> -3) [sqrt("z" + 6)/"z"]`
Evaluate the following limit:
`lim_(z -> -5)[((1/z + 1/5))/(z + 5)]`
Evaluate the following limit :
If `lim_(x -> 5) [(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.
In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.
`lim_(x -> -3) (3x + 2)` = – 7
Evaluate the following :
`lim_(x -> 1) [(x + 3x^2 + 5x^3 + ... + (2"n" - 1)x^"n" - "n"^2)/(x - 1)]`
Sketch the graph of a function f that satisfies the given value:
f(0) is undefined
`lim_(x -> 0) f(x)` = 4
f(2) = 6
`lim_(x -> 2) f(x)` = 3
Sketch the graph of a function f that satisfies the given value:
f(– 2) = 0
f(2) = 0
`lim_(x -> 2) f(x)` = 0
`lim_(x -> 2) f(x)` does not exist.
Write a brief description of the meaning of the notation `lim_(x -> 8) f(x)` = 25
If f(2) = 4, can you conclude anything about the limit of f(x) as x approaches 2?
Evaluate the following limits:
`lim_(x -> 2) (1/x - 1/2)/(x - 2)`
Evaluate the following limits:
`lim_(x -> 0) (sqrt(1 - x) - 1)/x^2`
Evaluate the following limits:
`lim_(x -> "a") (sqrt(x - "b") - sqrt("a" - "b"))/(x^2 - "a"^2) ("a" > "b")`
Evaluate the following limits:
`lim_(x -> 0) (sin^3(x/2))/x^2`
Evaluate the following limits:
`lim_(x - oo){x[log(x + "a") - log(x)]}`
Evaluate the following limits:
`lim_(x -> pi) (1 + sinx)^(2"cosec"x)`
Evaluate the following limits:
`lim_(x -> 0) (sqrt(2) - sqrt(1 + cosx))/(sin^2x)`
Choose the correct alternative:
`lim_(x -> 0) (x"e"^x - sin x)/x` is
If `lim_(x->1)(x^5-1)/(x-1)=lim_(x->k)(x^4-k^4)/(x^3-k^3),` then k = ______.
If `lim_(x -> 1) (x + x^2 + x^3|+ .... + x^n - n)/(x - 1)` = 820, (n ∈ N) then the value of n is equal to ______.