मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Evaluate the following limits: limx→17+x33-3+x2x-1 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits:

`lim_(x -> 1) (root(3)(7 + x^3) - sqrt(3 + x^2))/(x - 1)`

बेरीज

उत्तर

`lim_(x -> 1) (root(3)(7 + x^3) - sqrt(3 + x^2))/(x - 1) =  lim_(x -> 1) (root(3)(7 + x^2) - 2 + 2 sqrt(3 + x^2))/(x - 1)`

= `lim_(x -> 1) ((7 + x^3)^(1/3) - 2)/(x - 1) - lim_(x -> 1) ((3 + x^2)^(1/2) - 2)/(x - 1)`

= `lim_(x -> 1) ((7 + x^3)^(1/3) - (8)^(1/3))/(x^3 - 1) xx (x^3 - 1)/(x - 1) - lim_(x -> 1) ((3 + x^2)^(1/2) - (4)^(1/2))/(x^2 - 1) xx (x^2 - 1)/(x - 1)`

= `lim_(x -> 1) ((7 + x^3)^(1/3) - (8)^(1/2))/((7 + x^3) - 8) xx ((x - 1)(x^2 + x + 1))/(x - 1) - lim_(x -> 0) ((3 + x^2)^(1/2) - (4)^(1/2))/((3 + x^2) - 4) xx ((x + 1)(x - 1))/(x - 1)`

= `lim_(x -> 1) ((7 + x^3)^(1/3) - (8)^(1/2))/((7 + x^3) - 8) xx (x^2 + x + 1) - lim_(x _> 1) ((3 + x^2)^(4)^(1/2))/((3 + x^2) - 4) xx (x + 1)`

`lim_(x -> "a") (x^"n" - "a"^"n") = "na"^("n" - 1)`

= `1/3(8)^(1/3 - 1) (1^2 + 1 + 1) - 1/2(4)^(1/2 - 1) (1 + 1)`

= `1/3(8)^(-2/3) (3) - 1/2 xx (4)^(-1/2) xx (2)`

= `(2^3)^(-2/3) - (2^2)^(- 1/2)`

= `2^(-2) - 2^(-1)`

= `1/2^2 - 1/2`

= `1/4 - 1/2`

= `(1 - 2)/4`

= `- 1/4`

shaalaa.com
Concept of Limits
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Calculus - Limits and Continuity - Exercise 9.2 [पृष्ठ १०३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 9 Differential Calculus - Limits and Continuity
Exercise 9.2 | Q 10 | पृष्ठ १०३

संबंधित प्रश्‍न

Evaluate the following limit:

`lim_(z -> -3) [sqrt("z" + 6)/"z"]`


Evaluate the following limit:

`lim_(z -> -5)[((1/z + 1/5))/(z + 5)]`


Evaluate the following limit : 

If `lim_(x -> 5) [(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> -3) (3x + 2)` = – 7


Evaluate the following :

`lim_(x -> 1) [(x + 3x^2 + 5x^3 + ... + (2"n" - 1)x^"n" - "n"^2)/(x - 1)]`


Sketch the graph of a function f that satisfies the given value:

f(0) is undefined

`lim_(x -> 0) f(x)` = 4

f(2) = 6

`lim_(x -> 2) f(x)` = 3


Sketch the graph of a function f that satisfies the given value:

f(– 2) = 0

f(2) = 0

`lim_(x -> 2) f(x)` = 0

`lim_(x -> 2) f(x)` does not exist.


Write a brief description of the meaning of the notation `lim_(x -> 8) f(x)` = 25


If f(2) = 4, can you conclude anything about the limit of f(x) as x approaches 2?


Evaluate the following limits:

`lim_(x -> 2) (1/x - 1/2)/(x - 2)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 - x) - 1)/x^2`


Evaluate the following limits:

`lim_(x -> "a") (sqrt(x - "b") - sqrt("a" - "b"))/(x^2 - "a"^2) ("a" > "b")`


Evaluate the following limits:

`lim_(x -> 0) (sin^3(x/2))/x^2`


Evaluate the following limits:

`lim_(x - oo){x[log(x + "a") - log(x)]}`


Evaluate the following limits:

`lim_(x -> pi) (1 + sinx)^(2"cosec"x)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(2) - sqrt(1 + cosx))/(sin^2x)`


Choose the correct alternative:

`lim_(x -> 0) (x"e"^x - sin x)/x` is


If `lim_(x->1)(x^5-1)/(x-1)=lim_(x->k)(x^4-k^4)/(x^3-k^3),` then k = ______.


If `lim_(x -> 1) (x + x^2 + x^3|+ .... + x^n - n)/(x - 1)` = 820, (n ∈ N) then the value of n is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×