Advertisements
Advertisements
प्रश्न
Evaluate the following limits:
`lim_(x -> 2) (2 - sqrt(x + 2))/(root(3)(2) - root(3)(4 - x))`
उत्तर
`lim_(x -> 2) (2 - sqrt(x + 2))/(root(3)(2) - root(3)(4 - x)) = lim_(x -> 2) (sqrt(x + 2) - 2)/(root(3)(4 - x) - root(3)(2))`
= `lim_(x -> 2) ((x + 2)^(1/2) - (2^2)^(1/2))/((4 - x)^(1/3) - (2)^(1/3))`
= `lim_(x -> 2) ((x + 2)^(1/2) - (2)^(1/2))/(x - 2) xx (x - 2)/((4 - x)^(1/3) - (2)^(1/3))`
= `lim_(x -> 2) ((x + 2)^(1/2) - (4)^(1/2))/((x + 2) - 4) xx (-[(4 - x) - 2])/((4 - x)^(1/3) - (2)^(1/3)]`
= `lim_(x -> 2) ((x + 2)^(1/2)- (4)^(1/2))/((x + 2) - 4) xx - 1/(lim_(x -> 2) ((4 - x)^(1/3) - (2)^(1/3))/((4 - x) - 2)`
`lim_(x -> "a") (x^"n" - "a"^"n") = "na"^("n" - 1)`
= `1/2(4)^(1/2 - 1) xx - 1/(1/3 (2)^(1/3 - 1)`
= `1/2(4)^(-1/2) xx - 3/((2)^(-2/3)`
= `1/(2(2^2)^(1/2)) xx - 3 xx 2^(2/3)`
= `- 1/(2 xx 2) xx 3 xx 2^(2/3)`
= ` - 3/4 xx (2^2)^(1/3)`
`lim_(x -> 2) (2 - sqrt(x + 2))/(root(3)(2) - root(3)(4 - x)) = - 3/4 root(3)(4)`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit:
`lim_(z -> -3) [sqrt("z" + 6)/"z"]`
Evaluate the following limit:
`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`
Evaluate the following limit :
`lim_(z -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`
Evaluate the following :
Find the limit of the function, if it exists, at x = 1
f(x) = `{(7 - 4x, "for", x < 1),(x^2 + 2, "for", x ≥ 1):}`
Evaluate the following :
`lim_(x -> 1) [(x + 3x^2 + 5x^3 + ... + (2"n" - 1)x^"n" - "n"^2)/(x - 1)]`
In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?
`lim_(x -> 3) (4 - x)`
In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?
`lim_(x -> 0) sec x`
Sketch the graph of a function f that satisfies the given value:
f(– 2) = 0
f(2) = 0
`lim_(x -> 2) f(x)` = 0
`lim_(x -> 2) f(x)` does not exist.
If f(2) = 4, can you conclude anything about the limit of f(x) as x approaches 2?
Evaluate the following limits:
`lim_(sqrt(x) -> 3) (x^2 - 81)/(sqrt(x) - 3)`
Show that `lim_("n" -> oo) (1^2 + 2^2 + ... + (3"n")^2)/((1 + 2 + ... + 5"n")(2"n" + 3)) = 9/25`
Evaluate the following limits:
`lim_(x -> oo)(1 + 1/x)^(7x)`
Evaluate the following limits:
`lim_(x -> 0) (sin("a" + x) - sin("a" - x))/x`
Evaluate the following limits:
`lim_(x -> 0) (1 - cos^2x)/(x sin2x)`
Evaluate the following limits:
`lim_(x -> oo) ((x^2 - 2x + 1)/(x^2 -4x + 2))^x`
Choose the correct alternative:
`lim_(x -> oo) sinx/x`
`lim_(x→0^+)(int_0^(x^2)(sinsqrt("t"))"dt")/x^3` is equal to ______.
If `lim_(x -> 1) (x + x^2 + x^3|+ .... + x^n - n)/(x - 1)` = 820, (n ∈ N) then the value of n is equal to ______.