मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Evaluate the following limits: limx→∞(x2-2x+1x2-4x+2)x - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits:

`lim_(x -> oo) ((x^2 - 2x + 1)/(x^2 -4x + 2))^x`

बेरीज

उत्तर

`lim_(x -> oo) ((x^2 - 2x + 1)/(x^2 -4x + 2))^x =  lim_(x -> oo) ((x^2 - 4x + 2 + 2x - 1)/(x^2 - 4x + 2))^x`

= `lim_(x -> oo) [(x^2 - 4x - 2)/(x^2 - 4x + 2) +(2x - 1)/(x^2 - 4x + 2)]^x`

= `lim_(x -> oo) [1 + (2x - 1)/(x^2 - 4x + 2)]^x`

= `lim_(x - oo) [1 + 1/((x^2 -4x + 2)/(2x - 1))]^(((x^2 - 4x + 2)/(2x - 1) xx ((2x - 1)x)/(x^2 - 4x + 2))`

= `lim_(x -> oo) [(1 + (2x - 1)/(x^2 - 4x + 2))^((x^2 - 4x + 2)/(2x - 1))]^(((2x - 1)x)/(x^2 - 4x + 2))`

`lim_(x -> oo) ((x^2 - 2x + 1)/(x^2 - 4x + 2))^x = [lim_(x -> oo) "e"]^((2x^2 - x)/(x^2 - 4x + 2))`

`lim_(x -> oo) (1 + 1/x)^x`  = e

= `"e"^(lim_(x ->oo)) ((2x^2 - x)/(x^2 - 4x + 2))`

= `"e"^(lim_(x -> oo) (x^2(2 -x/x^2))/(x^2(1 - (4x)/(x^2) + 2/x^2))`

= `"e"^(lim_(x ->oo) ((2 - 1/x)/(1 -4/x + 2/x^2))`

= `"e"^(((2 - 0)/(1 - 0 + 0))`

`lim_(x -> oo) ((x^2 - 2x + 1)/(x^2 -4x + 2))^x` = e2 

shaalaa.com
Concept of Limits
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Calculus - Limits and Continuity - Exercise 9.4 [पृष्ठ ११८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 9 Differential Calculus - Limits and Continuity
Exercise 9.4 | Q 24 | पृष्ठ ११८

संबंधित प्रश्‍न

Evaluate the following limit :

`lim_(y -> 1)[(2y - 2)/(root(3)(7 + y) - 2)]`


Evaluate the following :

Given that 7x ≤ f(x) ≤ 3x2 – 6 for all x. Determine the value of `lim_(x -> 3) "f"(x)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 3) (4 - x)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 5) |x - 5|/(x - 5)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 0) sec x`


If f(2) = 4, can you conclude anything about the limit of f(x) as x approaches 2?


Evaluate : `lim_(x -> 3) (x^2 - 9)/(x - 3)` if it exists by finding `f(3^-)` and `f(3^+)`


Evaluate the following limits:

`lim_(sqrt(x) -> 3) (x^2 - 81)/(sqrt(x) - 3)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 - x) - 1)/x^2`


Evaluate the following limits:

`lim_(x -> oo) (x^4 - 5x)/(x^2 - 3x + 1)`


Show that  `lim_("n" -> oo) (1^2 + 2^2 + ... + (3"n")^2)/((1 + 2 + ... + 5"n")(2"n" + 3)) = 9/25`


Evaluate the following limits:

`lim_(x -> oo)(1 + "k"/x)^("m"/x)`


Evaluate the following limits:

`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`


Evaluate the following limits:

`lim_(x -> oo) (1 + 3/x)^(x + 2)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + sinx) - sqrt(1 - sinx))/tanx`


Choose the correct alternative:

`lim_(x - pi/2) (2x - pi)/cos x`


Choose the correct alternative:

`lim_(x -> oo) ((x^2 + 5x + 3)/(x^2 + x + 3))^x` is


Choose the correct alternative:

If `lim_(x -> 0) (sin "p"x)/(tan 3x)` = 4, then the value of p is


Choose the correct alternative:

`lim_(x -> oo) (1/"n"^2 + 2/"n"^2 + 3/"n"^2 + ... + "n"/"n"^2)` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×