Advertisements
Advertisements
प्रश्न
Evaluate the following limits:
`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`
उत्तर
`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3) = lim_(x -> oo)((2x^2 + 5 - 2)/(2x^2 + 5))^(8x^2 + 20 - 17)`
= `lim_(x -> oo) ((2x^2 - 5)/(2x^2 + 5) - 2/(2x^2 + 5))^(4(2x^2 + 5) - 17)`
= `lim_(x -> 00) (1 - 2/(2x^2 + 5))^(4(2x^2 + 5) - 17)`
Put 2x2 + 5 = y
When x → ∞
We have y = 2 × ∞ + 5 = ∞
x → ∞
⇒ y → ∞
∴ `lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3) = lim_(y -> oo) (1 - 2/y)^(4y - 17)`
= `lim_(y - oo) (1 - 2/y)^(4y) xx (1 - 2/y)^(-17)`
= `lim_(y ->oo) (1 -2/y)^(4y) xx lim_(y -> oo) (1 - 2/y)^(- 17)`
= `(lim_(y -> oo) (1 - 2/y)^y)^4 xx (1 - 2/oo)^(- 17)` ........(1)
We know `lim_(x -> oo) (1 + "k/x)^x` = ek
(1) ⇒ `lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`
= `(lim_(y -> oo)(1 + ((-2))/y)^y)^4 xx (1 - 0)^(- 17)`
= `("e"^(-2))^4 xx 1`
= `"e"^(-8)`
= `1/"e"^8`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit :
If `lim_(x -> 5) [(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.
In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?
`lim_(x -> 5) |x - 5|/(x - 5)`
Write a brief description of the meaning of the notation `lim_(x -> 8) f(x)` = 25
Evaluate : `lim_(x -> 3) (x^2 - 9)/(x - 3)` if it exists by finding `f(3^-)` and `f(3^+)`
Evaluate the following limits:
`lim_(x -> 2) (x^4 - 16)/(x - 2)`
Evaluate the following limits:
`lim_(x -> 1) (root(3)(7 + x^3) - sqrt(3 + x^2))/(x - 1)`
Evaluate the following limits:
`lim_(x - 0) (sqrt(1 + x^2) - 1)/x`
Evaluate the following limits:
`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9))`
Evaluate the following limits:
`lim_(x -> oo) (1 + x - 3x^3)/(1 + x^2 +3x^3)`
Evaluate the following limits:
`lim_(x -> 0) (2^x - 3^x)/x`
Evaluate the following limits:
`lim_(x - oo){x[log(x + "a") - log(x)]}`
Evaluate the following limits:
`lim_(x -> pi) (sin3x)/(sin2x)`
Evaluate the following limits:
`lim_(x -> ) (sinx(1 - cosx))/x^3`
Choose the correct alternative:
`lim_(x -> 0) sqrt(1 - cos 2x)/x`
Choose the correct alternative:
`lim_(x -> 3) [x]` =
Choose the correct alternative:
If `lim_(x -> 0) (sin "p"x)/(tan 3x)` = 4, then the value of p is
Choose the correct alternative:
`lim_(x -> oo) (1/"n"^2 + 2/"n"^2 + 3/"n"^2 + ... + "n"/"n"^2)` is
`lim_(x -> 5) |x - 5|/(x - 5)` = ______.