Advertisements
Advertisements
प्रश्न
Evaluate the following limits:
`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9))`
उत्तर
`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9)) = lim_(x -> 3) ((x + 3)(x - 3))/(x^2(x - 3)2`
= `lim_(x -> 3) (x +3)/(x^2(x - 3))`
To find he left limit
Put x = 3 – h
Where h > 0
When x → 3
We have h → 0
`lim_(x -> 3^-) (x^2 - 9)/(x^2(x^2 - 6x + 9)) = lim_("h" -> 0) (3 - "h" + 3)/((3 - "h")^2 (3 - "h" - 3))`
= `lim_("h" -> 0) (6 - "h")/(-"h"(3- "h")^2`
= `- lim_("h" -> 0) (6 - "h")/("h"(3 - "h")^2`
= `- (6 - 0)/(0(3 - 0)^2`
= `- 6/0`
`lim_(x -> 3^-) (x^2 - 9)/(x^2(x^2 - 6x + 9)) = - oo`
To find he right limit
Put x = 3 + h
Where h > 0
When x → 3
We have h → 0
`lim_(x -> 3^+) (x^2 - 9)/(x^2(x^2 - 6x + 9)) = lim_("h" -> 0) (3 + "h" + 3)/((3 + "h")^2 (3 + "h" - 3))`
= `lim_("h" -> 0) (6 + "h")/("h"(3 + "h")^2`
= `lim_("h" -> 0) (6 + "h")/("h"(3 + "h")^2`
= `(6 + 0)/(0(3 + 0)^2`
= `6/0`
`lim_(x -> 3^+) (x^2 - 9)/(x^2(x^2 - 6x + 9)) = oo`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit:
`lim_(y -> -3) [(y^5 + 243)/(y^3 + 27)]`
Evaluate the following limit :
`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
Evaluate the following limit :
`lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`
Evaluate the following :
Given that 7x ≤ f(x) ≤ 3x2 – 6 for all x. Determine the value of `lim_(x -> 3) "f"(x)`
In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?
`lim_(x -> 3) (4 - x)`
Verify the existence of `lim_(x -> 1) f(x)`, where `f(x) = {{:((|x - 1|)/(x - 1)",", "for" x ≠ 1),(0",", "for" x = 1):}`
Evaluate the following limits:
`lim_(x - 0) (sqrt(1 + x^2) - 1)/x`
Evaluate the following limits:
`lim_(x -> 0)(1 + x)^(1/(3x))`
Evaluate the following limits:
`lim_(x -> oo)(1 + "k"/x)^("m"/x)`
Evaluate the following limits:
`lim_(x -> oo) (1 + 3/x)^(x + 2)`
Evaluate the following limits:
`lim_(x -> 0) (tan 2x)/(sin 5x)`
Evaluate the following limits:
`lim_(x-> 0) (1 - cos x)/x^2`
Evaluate the following limits:
`lim_(x -> ) (sinx(1 - cosx))/x^3`
Choose the correct alternative:
`lim_(x - oo) sqrt(x^2 - 1)/(2x + 1)` =
Choose the correct alternative:
`lim_(x -> 0) (8^x - 4x - 2^x + 1^x)/x^2` =
Choose the correct alternative:
`lim_(x -> 3) [x]` =
Choose the correct alternative:
`lim_(x -> 0) ("e"^tanx - "e"^x)/(tan x - x)` =