हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Evaluate the following limits: limx→3x2-9x2(x2-6x+9) - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits:

`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9))`

योग

उत्तर

`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9)) =  lim_(x -> 3) ((x + 3)(x - 3))/(x^2(x - 3)2`

= `lim_(x -> 3) (x +3)/(x^2(x - 3))`

To find he left limit

Put x = 3 – h

Where h > 0

When x → 3

We have h → 0

`lim_(x -> 3^-) (x^2 - 9)/(x^2(x^2 - 6x + 9)) =   lim_("h" -> 0) (3 - "h" + 3)/((3 - "h")^2 (3 - "h" - 3))`

= `lim_("h" -> 0) (6 - "h")/(-"h"(3- "h")^2`

= `- lim_("h" -> 0) (6 - "h")/("h"(3 - "h")^2`

= `- (6 - 0)/(0(3 - 0)^2`

= `- 6/0`

`lim_(x -> 3^-) (x^2 - 9)/(x^2(x^2 - 6x + 9)) = - oo`

To find he right limit

Put x = 3 + h

Where h > 0

When x → 3

We have h → 0

`lim_(x -> 3^+) (x^2 - 9)/(x^2(x^2 - 6x + 9)) =   lim_("h" -> 0) (3 + "h" + 3)/((3 + "h")^2 (3 + "h" - 3))`

= `lim_("h" -> 0) (6 + "h")/("h"(3 + "h")^2`

= `lim_("h" -> 0) (6 + "h")/("h"(3 + "h")^2`

= `(6 + 0)/(0(3 + 0)^2`

= `6/0`

`lim_(x -> 3^+) (x^2 - 9)/(x^2(x^2 - 6x + 9)) = oo`

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.3 [पृष्ठ १११]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.3 | Q 2 | पृष्ठ १११

संबंधित प्रश्न

Evaluate the following limit:

`lim_(y -> -3) [(y^5 + 243)/(y^3 + 27)]`


Evaluate the following limit:

`lim_(z -> -5)[((1/z + 1/5))/(z + 5)]`


Evaluate the following limit:

`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limit :

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Evaluate the following limit :

`lim_(x -> 1) [(x + x^3 + x^5 + ... + x^(2"n" - 1) - "n")/(x - 1)]`


Evaluate the following :

`lim_(x -> 0)[x/(|x| + x^2)]`


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (sqrt(x + 3) - sqrt(3))/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.2911 0.2891 0.2886 0.2886 0.2885 0.28631

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 3) (4 - x)`


Sketch the graph of f, then identify the values of x0 for which `lim_(x -> x_0)` f(x) exists.

f(x) = `{{:(x^2",", x ≤ 2),(8 - 2x",", 2 < x < 4),(4",", x ≥ 4):}`


Sketch the graph of a function f that satisfies the given value:

f(– 2) = 0

f(2) = 0

`lim_(x -> 2) f(x)` = 0

`lim_(x -> 2) f(x)` does not exist.


If f(2) = 4, can you conclude anything about the limit of f(x) as x approaches 2?


Evaluate the following limits:

`lim_(x -> 2) (1/x - 1/2)/(x - 2)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(x^2 + 1) - 1)/(sqrt(x^2 + 16) - 4)`


Evaluate the following limits:

`lim_(x -> oo)(1 + 1/x)^(7x)`


Evaluate the following limits:

`lim_(x -> 0)(1 + x)^(1/(3x))`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(x^2 + "a"^2) - "a")/(sqrt(x^2 + "b"^2) - "b")`


Evaluate the following limits:

`lim_(x -> 0) (2 "arc"sinx)/(3x)`


Choose the correct alternative:

`lim_(x - pi/2) (2x - pi)/cos x`


Choose the correct alternative:

`lim_(alpha - pi/4) (sin alpha - cos alpha)/(alpha - pi/4)` is


Choose the correct alternative:

`lim_(x -> 0) ("e"^tanx - "e"^x)/(tan x - x)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×