हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Evaluate the following limits: arclimx→02arcsinx3x - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits:

`lim_(x -> 0) (2 "arc"sinx)/(3x)`

योग

उत्तर

We know `lim_(x -> 0) (sin^-1 x)/x` = 1

`lim_(x -> 0) (2"arc" sinx)/(3x) =  lim_(x -> 0) 2/3 (sin^-1 x)/x`

= `2/3 lim_(x -> 0) (sin^-1 x)/x`

`lim_(x -> 0) (2"arc" sinx)/(3x) =  2/3 xx 1`

= `2/3`

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.4 [पृष्ठ ११८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.4 | Q 12 | पृष्ठ ११८

संबंधित प्रश्न

Evaluate the following limit:

`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limit :

`lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`


Evaluate the following limit :

`lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2)(2x + 3)` = 7


Evaluate the following :

`lim_(x -> 0) {1/x^12 [1 - cos(x^2/2) - cos(x^4/4) + cos(x^2/2) cos(x^4/4)]}`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 3) (4 - x)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) (x^2 + 2)`


Sketch the graph of f, then identify the values of x0 for which `lim_(x -> x_0)` f(x) exists.

f(x) = `{{:(x^2",", x ≤ 2),(8 - 2x",", 2 < x < 4),(4",", x ≥ 4):}`


Evaluate the following limits:

`lim_(x -> "a") (sqrt(x - "b") - sqrt("a" - "b"))/(x^2 - "a"^2) ("a" > "b")`


Evaluate the following limits:

`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9))`


Evaluate the following limits:

`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m"`


Evaluate the following limits:

`lim_(x-> 0) (1 - cos x)/x^2`


Evaluate the following limits:

`lim_(x -> 0) (3^x - 1)/(sqrt(x + 1) - 1)`


Choose the correct alternative:

`lim_(x -> 0) sqrt(1 - cos 2x)/x`


Choose the correct alternative:

`lim_(x -> 0) ("a"^x - "b"^x)/x` =


Choose the correct alternative:

`lim_(x -> oo) (1/"n"^2 + 2/"n"^2 + 3/"n"^2 + ... + "n"/"n"^2)` is


Choose the correct alternative:

`lim_(x -> 0) ("e"^(sin x) - 1)/x` =


Choose the correct alternative:

`lim_(x -> 0) ("e"^tanx - "e"^x)/(tan x - x)` =


If `lim_(x -> 1) (x + x^2 + x^3|+ .... + x^n - n)/(x - 1)` = 820, (n ∈ N) then the value of n is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×