हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Evaluate the following limits: nmlimα→0sin(αn)(sinα)m - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits:

`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m"`

योग

उत्तर

We know `lim_(x -> 0) (sin x)/x` = 1

`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m" =  lim_(alpha -> 0) (sin (alpha^"n"))/(1/alpha^"n" (alpha^"n")) xx (alpha^(1/"m") * alpha^"m")/(sin alpha)^"m"`

= `lim_(alpha -> 0) alpha^"n" * (sin(alpha^"n"))/alpha^"n" xx 1/alpha^"m" * 1/(((sinalpha)^"m")/(alpha^"m"))`

= `lim_(alpha -> 0) alpha^("n" - "m") *(sin(alpha^"n"))/alpha^"n" xx 1/((sinalpha)/alpha)^"m"`

= `(lim_(alpha -> 0) alpha^("n" - "m")) xx (lim_(alpha^"n" -> 0) (sin(alpha^"n"))/alpha^"n") xx 1/(lim_(alpha -> 0) ((sin alpha)/alpha)^"m")`

Case (i) m = n

`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m" = (lim_(alpha -> 0) alpha^("m" - "m")) (lim_(alpha^"m" -> 0) (sin(alpha^"m"))/alpha^"m") xx 1/(lim_(alpha -> 0) ((sin alpha)/alpha)^"m")`

= `(lim_(alpha -> 0) alpha^0) xx 1 xx 1/1`

`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m" = 1 xx 1 xx 1` = 1

Case (ii) m > n then n – m < 0

`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m" = (lim_(alpha -> 0) alpha^("n" - "m")) (lim_(apha^"m" -> 0) (sin(alpha^"m"))/alpha^"m") xx 1/((lim_(alpha-> 0) ((sin alpha)/alpha)^"m"))`

= `lim_(alpha -> 0) 1/(alpha^("m" - "n")) xx 1 xx 1/1`

= `oo xx 1 xx 1 = oo`

Since `lim_(alpha -> 0) 1/(alpha^("m" - "n")) =  lim_(alpha -> 0) (1/0)^("m" - "n") = oo`

Case (iii) m < n then n – m > 0

`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m" = (lim_(alpha -> 0) alpha^("n" - "m")) (lim_(alpha^"m" -> 0) (sin(alpha^"m"))/(alpha^"m")) xx 1/(lim_(alpha-> 0) ((sin alpha)/alpha)^"m"`

= `(0)^("n" - "m") xx 1 xx 1`

= 0

∴ `lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m" = {{:(1,  "if",  "m" = "n"),(oo,  "if",  "m" > "n"),(0,  "if",  m < n):}`

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.4 [पृष्ठ ११८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.4 | Q 9 | पृष्ठ ११८

संबंधित प्रश्न

Evaluate the following limit :

`lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`


Evaluate the following limit :

`lim_(x -> 7) [(x^3 - 343)/(sqrt(x) - sqrt(7))]`


Evaluate the following limit :

`lim_(x -> 1) [(x + x^3 + x^5 + ... + x^(2"n" - 1) - "n")/(x - 1)]`


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 2) (x - 2)/(x^2 - 4)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.25641 0.25062 0.250062 0.24993 0.24937 0.24390

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (sqrt(x + 3) - sqrt(3))/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.2911 0.2891 0.2886 0.2886 0.2885 0.28631

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> - 3) (sqrt(1 - x) - 2)/(x + 3)`

x – 3.1  – 3.01 – 3.00 – 2.999 – 2.99 – 2.9
f(x) – 0.24845 – 0.24984 – 0.24998 – 0.25001 – 0.25015 – 0.25158

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 5) |x - 5|/(x - 5)`


Evaluate : `lim_(x -> 3) (x^2 - 9)/(x - 3)` if it exists by finding `f(3^-)` and `f(3^+)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(x^2 + 1) - 1)/(sqrt(x^2 + 16) - 4)`


Find the left and right limits of f(x) = tan x at x = `pi/2`


Evaluate the following limits:

`lim_(x -> oo) (1 + x - 3x^3)/(1 + x^2 +3x^3)`


Evaluate the following limits:

`lim_(x -> 0) (sin^3(x/2))/x^2`


Evaluate the following limits:

`lim_(x -> oo) x [3^(1/x) + 1 - cos(1/x) - "e"^(1/x)]`


Evaluate the following limits:

`lim_(x -> 0) ("e"^("a"x) - "e"^("b"x))/x`


Evaluate the following limits:

`lim_(x -> 0) (tan x - sin x)/x^3`


Choose the correct alternative:

If `f(x) = x(- 1)^([1/x])`, x ≤ 0, then the value of `lim_(x -> 0) f(x)` is equal to


Choose the correct alternative:

`lim_(alpha - pi/4) (sin alpha - cos alpha)/(alpha - pi/4)` is


Choose the correct alternative:

`lim_(x -> oo) (1/"n"^2 + 2/"n"^2 + 3/"n"^2 + ... + "n"/"n"^2)` is


The value of `lim_(x→0)(sin(ℓn e^x))^2/((e^(tan^2x) - 1))` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×