हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Evaluate : limx→3x2-9x-3 if it exists by finding f(3-) and f(3+) - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate : `lim_(x -> 3) (x^2 - 9)/(x - 3)` if it exists by finding `f(3^-)` and `f(3^+)`

योग

उत्तर

`lim_(x -> 3) (x^2 - 9)/(x - 3) = lim_(x - 3^-) ((x + 3)(x - 3))/(x - 3)`

= `lim_(x -> 3^-) (x + 3)`

`lim_(x -> 3) (x^2 - 9)/(x - 3)` = 3 + 3

= 6   ........(1)

`lim_(x -> 3) (x^2 - 9)/(x - 3) = lim_(x -> 3^+) (x + 3)`

= 3 + 3

= 6   .......(2)

From equations (1) and (2) we get

`lim_(x -> 3) (x^2 - 9)/(x - 3) = lim_(x -> 3^+) (x^2 - 9)/(x - 3)` = 6

∴ `lim_(x -> 3) (x^2 - 9)/(x - 3)` = 6

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.1 [पृष्ठ ९८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.1 | Q 22 | पृष्ठ ९८

संबंधित प्रश्न

Evaluate the following limit :

`lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 1) (x^2 + x + 1)` = 3


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 3) (4 - x)`


Sketch the graph of a function f that satisfies the given value:

f(– 2) = 0

f(2) = 0

`lim_(x -> 2) f(x)` = 0

`lim_(x -> 2) f(x)` does not exist.


If the limit of f(x) as x approaches 2 is 4, can you conclude anything about f(2)? Explain reasoning


Evaluate the following limits:

`lim_(x - 0) (sqrt(1 + x^2) - 1)/x`


Evaluate the following limits:

`lim_(x -> oo) (x^3 + x)/(x^4 - 3x^2 + 1)`


Evaluate the following limits:

`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`


Evaluate the following limits:

`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m"`


Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/x`


Evaluate the following limits:

`lim_(x -> 0) (1 - cos^2x)/(x sin2x)`


Evaluate the following limits:

`lim_(x -> oo) ((x^2 - 2x + 1)/(x^2 -4x + 2))^x`


Choose the correct alternative:

`lim_(theta -> 0) (sinsqrt(theta))/(sqrt(sin theta)`


Choose the correct alternative:

`lim_(x -> 0) ("a"^x - "b"^x)/x` =


Choose the correct alternative:

If `f(x) = x(- 1)^([1/x])`, x ≤ 0, then the value of `lim_(x -> 0) f(x)` is equal to


Choose the correct alternative:

`lim_(x -> 0) (x"e"^x - sin x)/x` is


Choose the correct alternative:

The value of `lim_(x -> 0) sinx/sqrt(x^2)` is


`lim_(x -> 0) ((2 + x)^5 - 2)/((2 + x)^3 - 2)` = ______.


`lim_(x→0^+)(int_0^(x^2)(sinsqrt("t"))"dt")/x^3` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×