English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Evaluate the following limits: limx→∞(2x2+32x2+5)8x2+3 - Mathematics

Advertisements
Advertisements

Question

Evaluate the following limits:

`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`

Sum

Solution

`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3) =  lim_(x -> oo)((2x^2 + 5 - 2)/(2x^2 + 5))^(8x^2 + 20 - 17)`

= `lim_(x -> oo) ((2x^2 - 5)/(2x^2 + 5) - 2/(2x^2 + 5))^(4(2x^2 + 5) - 17)`

= `lim_(x -> 00) (1 - 2/(2x^2 + 5))^(4(2x^2 + 5) - 17)`

Put 2x2 + 5 = y

When x → ∞

We have y = 2 × ∞ + 5 = ∞

x → ∞

⇒ y → ∞

∴ `lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3) =  lim_(y -> oo) (1 - 2/y)^(4y - 17)`

= `lim_(y - oo) (1 - 2/y)^(4y) xx (1 - 2/y)^(-17)`

= `lim_(y ->oo) (1 -2/y)^(4y) xx lim_(y -> oo) (1 - 2/y)^(- 17)`

= `(lim_(y -> oo) (1 - 2/y)^y)^4 xx (1 - 2/oo)^(- 17)`  ........(1)

We know `lim_(x -> oo) (1 + "k/x)^x` = ek

(1) ⇒ `lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`

= `(lim_(y -> oo)(1 + ((-2))/y)^y)^4 xx (1 - 0)^(- 17)`

= `("e"^(-2))^4 xx 1`

= `"e"^(-8)`

= `1/"e"^8`

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.4 [Page 117]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.4 | Q 4 | Page 117

RELATED QUESTIONS

Evaluate the following limit :

`lim_(x -> 1)[(x + x^2 + x^3 + ......... + x^"n" - "n")/(x - 1)]`


Evaluate the following limit :

`lim_(x -> 7) [(x^3 - 343)/(sqrt(x) - sqrt(7))]`


Evaluate the following :

Given that 7x ≤ f(x) ≤ 3x2 – 6 for all x. Determine the value of `lim_(x -> 3) "f"(x)`


Evaluate the following :

`lim_(x -> 0) [(sqrt(1 - cosx))/x]`


Verify the existence of `lim_(x -> 1) f(x)`, where `f(x) = {{:((|x - 1|)/(x - 1)",",  "for"  x ≠ 1),(0",",  "for"  x = 1):}`


Evaluate the following limits:

`lim_("h" -> 0) (sqrt(x + "h") - sqrt(x))/"h", x > 0`


Find the left and right limits of f(x) = tan x at x = `pi/2`


Evaluate the following limits:

`lim_(x -> oo) (x^4 - 5x)/(x^2 - 3x + 1)`


Show that  `lim_("n" -> oo) (1^2 + 2^2 + ... + (3"n")^2)/((1 + 2 + ... + 5"n")(2"n" + 3)) = 9/25`


Show that `lim_("n" -> oo) 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/("n"("n" + 1))` = 1


A tank contains 5000 litres of pure water. Brine (very salty water) that contains 30 grams of salt per litre of water is pumped into the tank at a rate of 25 litres per minute. The concentration of salt water after t minutes (in grams per litre) is C(t) = `(30"t")/(200 + "t")`. What happens to the concentration as t → ∞?


Evaluate the following limits:

`lim_(x -> 0) ("e"^("a"x) - "e"^("b"x))/x`


Choose the correct alternative:

`lim_(theta -> 0) (sinsqrt(theta))/(sqrt(sin theta)`


Choose the correct alternative:

`lim_(x -> 0) ("a"^x - "b"^x)/x` =


Choose the correct alternative:

If `f(x) = x(- 1)^([1/x])`, x ≤ 0, then the value of `lim_(x -> 0) f(x)` is equal to


Choose the correct alternative:

`lim_(x -> 3) [x]` =


`lim_(x -> 0) ((2 + x)^5 - 2)/((2 + x)^3 - 2)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×