English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Show that nnnlimn→∞11.2+12.3+13.4+...+1n(n+1) = 1 - Mathematics

Advertisements
Advertisements

Question

Show that `lim_("n" -> oo) 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/("n"("n" + 1))` = 1

Sum

Solution

Tn = `1/("n"("n" + 1))`

`1/("n"("n" + 1)) = "A"/"n" + "B"/("n" +1)`

1 = A(n + 1) + Bn

Put n = 0

1 = A(0 + 1) + B × 0

A = 1

Put n = – 1

1 = A(– 1 + 1) + B(– 1)

1 = 0 – B

⇒ B = – 1

`1/("n"("n" + 1)) = 1/"n" - 1/("n" + 1)`

Tn = `1/"n" - 1/("n" + 1)`

T1 = `1/1- 1/2`

T2 = `1/2 - 1/3`

T3 = `1/3 - 1/4`

........................
........................

Tn = `1/"n" - 1/("n" + 1)`

T1 + T2 + .... + Tn = `(1/1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + .... + (1/"n" - 1/("n" + 1))`

T1 + T2 + .... + Tn = `(1 - 1/("n" + 1))`

`lim_("n" -> oo) ("T"_1 + "T"_2 + .... + "T"_"n") = lim_("n" -> oo) (1 - 1/("n" + 1))`

= `1 - lim_("n" -> oo) 1/("n" + 1)`

= 1 – 0

 `lim_("n" -> oo) 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/("n"("n" + 1))` = 1

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.3 [Page 111]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.3 | Q 8. (iii) | Page 111

RELATED QUESTIONS

Evaluate the following limit : 

If `lim_(x -> 5) [(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2)(2x + 3)` = 7


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 2) f(x)` where `f(x) = {{:(4 - x",", x ≠ 2),(0",", x = 2):}`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 5) |x - 5|/(x - 5)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 0) sec x`


Sketch the graph of a function f that satisfies the given value:

f(– 2) = 0

f(2) = 0

`lim_(x -> 2) f(x)` = 0

`lim_(x -> 2) f(x)` does not exist.


Write a brief description of the meaning of the notation `lim_(x -> 8) f(x)` = 25


Evaluate the following limits:

`lim_(sqrt(x) -> 3) (x^2 - 81)/(sqrt(x) - 3)`


Evaluate the following limits:

`lim_(x -> 2) (2 - sqrt(x + 2))/(root(3)(2) - root(3)(4 - x))`


Evaluate the following limits:

`lim_(x -> 5) (sqrt(x - 1) - 2)/(x - 5)`


Evaluate the following limits:

`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9))`


Evaluate the following limits:

`lim_(x  -> oo) 3/(x - 2) - (2x + 11)/(x^2 + x - 6)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(x^2 + "a"^2) - "a")/(sqrt(x^2 + "b"^2) - "b")`


Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/x`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(2) - sqrt(1 + cosx))/(sin^2x)`


Choose the correct alternative:

`lim_(x - pi/2) (2x - pi)/cos x`


Choose the correct alternative:

`lim_(x -> 0) ("e"^(sin x) - 1)/x` =


`lim_(x→∞)((x + 7)/(x + 2))^(x + 4)` is ______.


The value of `lim_(x→0)(sin(ℓn e^x))^2/((e^(tan^2x) - 1))` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×