Advertisements
Advertisements
Question
Evaluate the following limits:
`lim_(x -> 2) (2 - sqrt(x + 2))/(root(3)(2) - root(3)(4 - x))`
Solution
`lim_(x -> 2) (2 - sqrt(x + 2))/(root(3)(2) - root(3)(4 - x)) = lim_(x -> 2) (sqrt(x + 2) - 2)/(root(3)(4 - x) - root(3)(2))`
= `lim_(x -> 2) ((x + 2)^(1/2) - (2^2)^(1/2))/((4 - x)^(1/3) - (2)^(1/3))`
= `lim_(x -> 2) ((x + 2)^(1/2) - (2)^(1/2))/(x - 2) xx (x - 2)/((4 - x)^(1/3) - (2)^(1/3))`
= `lim_(x -> 2) ((x + 2)^(1/2) - (4)^(1/2))/((x + 2) - 4) xx (-[(4 - x) - 2])/((4 - x)^(1/3) - (2)^(1/3)]`
= `lim_(x -> 2) ((x + 2)^(1/2)- (4)^(1/2))/((x + 2) - 4) xx - 1/(lim_(x -> 2) ((4 - x)^(1/3) - (2)^(1/3))/((4 - x) - 2)`
`lim_(x -> "a") (x^"n" - "a"^"n") = "na"^("n" - 1)`
= `1/2(4)^(1/2 - 1) xx - 1/(1/3 (2)^(1/3 - 1)`
= `1/2(4)^(-1/2) xx - 3/((2)^(-2/3)`
= `1/(2(2^2)^(1/2)) xx - 3 xx 2^(2/3)`
= `- 1/(2 xx 2) xx 3 xx 2^(2/3)`
= ` - 3/4 xx (2^2)^(1/3)`
`lim_(x -> 2) (2 - sqrt(x + 2))/(root(3)(2) - root(3)(4 - x)) = - 3/4 root(3)(4)`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit:
`lim_(z -> -3) [sqrt("z" + 6)/"z"]`
Evaluate the following limit :
`lim_(x -> 1) [(x + x^3 + x^5 + ... + x^(2"n" - 1) - "n")/(x - 1)]`
In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.
`lim_(x -> 2)(2x + 3)` = 7
In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.
`lim_(x -> 1) (x^2 + x + 1)` = 3
Evaluate the following :
`lim_(x -> 0)[x/(|x| + x^2)]`
In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?
`lim_(x -> 3) 1/(x - 3)`
Sketch the graph of a function f that satisfies the given value:
f(0) is undefined
`lim_(x -> 0) f(x)` = 4
f(2) = 6
`lim_(x -> 2) f(x)` = 3
Sketch the graph of a function f that satisfies the given value:
f(– 2) = 0
f(2) = 0
`lim_(x -> 2) f(x)` = 0
`lim_(x -> 2) f(x)` does not exist.
Evaluate the following limits:
`lim_(x -> 1) (sqrt(x) - x^2)/(1 - sqrt(x))`
Evaluate the following limits:
`lim_(x -> 1) (root(3)(7 + x^3) - sqrt(3 + x^2))/(x - 1)`
Evaluate the following limits:
`lim_(x -> 5) (sqrt(x - 1) - 2)/(x - 5)`
Evaluate the following limits:
`lim_(x -> oo) (1 + 3/x)^(x + 2)`
Evaluate the following limits:
`lim_(x -> 0) (sin^3(x/2))/x^2`
Evaluate the following limits:
`lim_(x -> 0) (tan 2x)/(sin 5x)`
Evaluate the following limits:
`lim_(x -> 0) (2 "arc"sinx)/(3x)`
Evaluate the following limits:
`lim_(x-> 0) (1 - cos x)/x^2`
Choose the correct alternative:
`lim_(x - oo) sqrt(x^2 - 1)/(2x + 1)` =
Choose the correct alternative:
`lim_(x -> oo) (1/"n"^2 + 2/"n"^2 + 3/"n"^2 + ... + "n"/"n"^2)` is
Choose the correct alternative:
`lim_(x -> 0) ("e"^tanx - "e"^x)/(tan x - x)` =