English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Evaluate the following limits: limx-01+x2-1x - Mathematics

Advertisements
Advertisements

Question

Evaluate the following limits:

`lim_(x - 0) (sqrt(1 + x^2) - 1)/x`

Sum

Solution

`lim_(x - 0) (sqrt(1 + x^2) - 1)/x =  lim_(x -> 0) [(sqrt(1 + x^2) - 1)/x xx (sqrt(1 + x^2) + 1)/(sqrt(1 + x^2) + 1)]`

= `lim_(x -> 0) [((1 + x^2) - 1)/(x(sqrt(1 + x^2) + 1))]`

= `lim_(x -> 0) [x^2/(x(sqrt(1 + x^2) + 1))]`

= `lim_(x -> 0) [x/(sqrt(1 + x^2) + 1)]`

= `0/(sqrt(1 + 0^2) + 1)`

`lim_(x -> 0) (sqrt(1 + x^2) - 1)/x = 0/2` = 0

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.2 [Page 103]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.2 | Q 12 | Page 103

RELATED QUESTIONS

Evaluate the following limit:

`lim_(z -> -3) [sqrt("z" + 6)/"z"]`


Evaluate the following limit:

`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limit:

If `lim_(x -> 1)[(x^4 - 1)/(x - 1)]` = `lim_(x -> "a")[(x^3 - "a"^3)/(x - "a")]`, find all possible values of a


In problems 1 – 6, using the table estimate the value of the limit.

`lim_(x -> 2) (x - 2)/(x^2 - x - 2)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.344820 0.33444 0.33344 0.333222 0.33222 0.332258

If the limit of f(x) as x approaches 2 is 4, can you conclude anything about f(2)? Explain reasoning


Evaluate the following limits:

`lim_(x -> 2) (1/x - 1/2)/(x - 2)`


Evaluate the following limits:

`lim_(x -> 2) (2 - sqrt(x + 2))/(root(3)(2) - root(3)(4 - x))`


Evaluate the following limits:

`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9))`


Evaluate the following limits:

`lim_(x -> 0) (sin^3(x/2))/x^2`


Evaluate the following limits:

`lim_(x -> 0) (sinalphax)/(sinbetax)`


Evaluate the following limits:

`lim_(x -> 0) (2 "arc"sinx)/(3x)`


Evaluate the following limits:

`lim_(x -> 0) (2^x - 3^x)/x`


Evaluate the following limits:

`lim_(x -> pi) (1 + sinx)^(2"cosec"x)`


Evaluate the following limits:

`lim_(x -> ) (sinx(1 - cosx))/x^3`


Choose the correct alternative:

`lim_(x -> oo) sinx/x`


Choose the correct alternative:

`lim_(alpha - pi/4) (sin alpha - cos alpha)/(alpha - pi/4)` is


If `lim_(x->1)(x^5-1)/(x-1)=lim_(x->k)(x^4-k^4)/(x^3-k^3),` then k = ______.


`lim_(x -> 5) |x - 5|/(x - 5)` = ______.


The value of `lim_(x→0)(sin(ℓn e^x))^2/((e^(tan^2x) - 1))` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×