English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Evaluate the following limits: limx→01-x-1x2 - Mathematics

Advertisements
Advertisements

Question

Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 - x) - 1)/x^2`

Sum

Solution

`lim_(x -> 0) (sqrt(1 - x) - 1)/x^2 =  lim_(x -> 0) [(sqrt(1 - x) - 1)/x^2 xx (sqrt(1 - x) + 1)/(sqrt(1 - x) + 1)]`

= `lim_( -> 0) [((1 - x) - 1)/(x^2 (sqrt(1 - x) + 1))]`

= `lim_(x -> 0) [(- x)/(x(sqrt(1 - x) + 1))]`

= `- lim_(x -> 0) [1/(x(sqrt(1 - x) + 1))]`

= `- 1/(0(sqrt(1 - 0) + 1))`

= `- oo`

∴ `lim_(x -> 0) (sqrt(1 - x) - 1)/x^2` does not exist.

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.2 [Page 103]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.2 | Q 13 | Page 103

RELATED QUESTIONS

Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limit:

If `lim_(x -> 1)[(x^4 - 1)/(x - 1)]` = `lim_(x -> "a")[(x^3 - "a"^3)/(x - "a")]`, find all possible values of a


Evaluate the following limit :

`lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2)(2x + 3)` = 7


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 1) (x^2 + x + 1)` = 3


Evaluate the following :

`lim_(x -> 0) [(sqrt(1 - cosx))/x]`


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 2) (x - 2)/(x^2 - 4)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.25641 0.25062 0.250062 0.24993 0.24937 0.24390

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 3) (4 - x)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) f(x)` where `f(x) = {{:(x^2 + 2",", x ≠ 1),(1",", x = 1):}`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> x/2) tan x`


If f(2) = 4, can you conclude anything about the limit of f(x) as x approaches 2?


Verify the existence of `lim_(x -> 1) f(x)`, where `f(x) = {{:((|x - 1|)/(x - 1)",",  "for"  x ≠ 1),(0",",  "for"  x = 1):}`


Show that `lim_("n" -> oo) 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/("n"("n" + 1))` = 1


Evaluate the following limits:

`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`


Evaluate the following limits:

`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m"`


Evaluate the following limits:

`lim_(x -> pi) (sin3x)/(sin2x)`


Evaluate the following limits:

`lim_(x -> pi) (1 + sinx)^(2"cosec"x)`


If `lim_(x->1)(x^5-1)/(x-1)=lim_(x->k)(x^4-k^4)/(x^3-k^3),` then k = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×